PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 34 | 5 |

Tytuł artykułu

Production of isoflavone genistein in transgenic IFS tobacco roots and its role in stimulating the developmnet of arbuscular mycorrhiza

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Flavonoids and isoflavonoids are secondary metabolites in plants. With the goal of obtaining isoflavonoids from a wide range of plants, a few key studies have proven that isoflavonoids can be produced in non-leguminous plants by transgenic engineering. Many earlier studies investigate genistein biosynthesis in leaves and petals of isoflavone synthase (IFS) transgenic tobacco. However, most reports do not attempt to analyze quantification of genistein or do not check the presence of genistein in transgenic plant roots. In addition, little is known about the influence of genistein on arbuscular mycorrhiza (AM). In this paper, we reported that genistein was obtained from transgenic IFS tobacco roots. In addition, we revealed that endogenous genistein and 10 µg g⁻¹ exogenous genistein enhanced the development of AM symbiosis. We also revealed the relative expression levels of pertinent genes during the development of AM symbiosis. Our results suggest that genistein plays a positive role in the development of AM symbiosis in tobacco roots.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

34

Numer

5

Opis fizyczny

p.1863-1871,fig.,ref.

Twórcy

autor
  • The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, 100871 Beijing, China
autor
  • Department of Science and Technology Management, Chinese Academic of Agricultural Sciences, 100081 Beijing, China
autor
  • The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, 100871 Beijing, China
autor
  • The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, 100871 Beijing, China

Bibliografia

  • Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of realtime quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250. doi:10.1158/0008-5472.CAN-04-0496
  • Antunes PM, Rajcan I, Goss MJ (2006) Specific flavonoids as interconnecting signals in the tripartite symbiosis formed by arbuscular mycorrhizal fungi, Bradyrhizobium japonicum (Kirchner) Jordan and soybean (Glycine max (L.) Merr.). Soil Biol Biochem 38:533–543. doi:10.1016/j.soilbio.2005.06.008
  • Bago B, Pfeffer PE, Shachar-Hill Y (2000) Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol 124:949–957. doi:10.1104/pp.124.3.949
  • Biermann B, Linderman RG (1981) Quantifying vesicular–arbuscular mycorrhizae—a proposed method towards standardization. New Phytol 87:63–67. doi:10.1111/j.1469-8137.1981.tb01690.x
  • Bonfante P, Genre A (2008) Plants and arbuscular mycorrhizal fungi: an evolutionary-developmental perspective. Trends Plant Sci 13:492–498. doi:10.1016/j.tplants.2008.07.001
  • Bucher M, Wegmuller S, Drissner D (2009) Chasing the structures of small molecules in arbuscular mycorrhizal signaling. Curr Opin Plant Biol 12:500–507. doi:10.1016/j.pbi.2009.06.001
  • Chabot S, Rhlid RB, Chenevert R, Piche Y (1992) Hyphal growth promotion in vitro of the VA mycorrhizal fungus, Gigaspora margarita Becker & Hall, by the activity of structurally specific flavonoid compounds under CO₂-enriched conditions. New Phytol 122:461–467. doi:10.1111/j.1469-8137.1992.tb00074.x
  • Chen AQ, Hu J, Sun SB, Xu GH (2007) Conservation and divergence of both phosphate- and mycorrhiza-regulated physiological responses and expression patterns of phosphate transporters in solanaceous species. New Phytol 173:817–831. doi:10.1111/j.1469-8137.2006.01962.x
  • De Rijke E, Aardenburg L, Van Dijk J, Ariese F, Ernst WHO, Gooijer C, Brinkman UATH (2005) Changed isoflavone levels in red clover (Trifolium pratense L.) leaves with disturbed root nodulation in response to waterlogging. J Chem Ecol 31:1285–1298. doi:10.1007/s10886-005-5286-1
  • Deavours BE, Dixon RA (2005) Metabolic engineering of isoflavonoid biosynthesis in alfalfa. Plant Physiol 138:2245–2259. doi: 10.1104/pp.105.062539
  • Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847. doi:10.1038/35081178
  • Elmer WH (2002) Influence of formononetin and NaCl on mycorrhizal colonization and fusarium crown and root rot of asparagus. Plant Dis 86:1318–1324. doi:10.1094/PDIS.2002.86.12.1318
  • Fan QJ, Liu JH (2011) Colonization with arbuscular mycorrhizal fungus affects growth, drought tolerance and expression of stress-responsive genes in Poncirus trifoliata. Acta Physiol Plant 33:1533–1542. doi:10.1007/s11738-011-0789-6
  • Holsters M (2008) SYMRK, an enigmatic receptor guarding and guiding microbial endosymbioses with plant roots. Proc Natl Acad Sci USA 105:4537–4538. doi:10.1073/pnas.0801270105
  • Jung W, Yu O, Lau SMC, O’Keefe DP, Odell J, Fader G, McGonigle B (2000) Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nature Biotechnol 18:208–212. doi:10.1038/72671
  • Kai M, Takazumi K, Adachi H, Wasaki J, Shinano T, Osaki M (2002) Cloning and characterization of four phosphate transporter cDNAs in tobacco. Plant Sci 163:837–846. doi:10.1016/S0168-9452(02)00233-9
  • Khade SW, Rodrigues BF, Sharma PK (2010) Arbuscular mycorrhizal status and root phosphatase activities in vegetative Carica papaya L. varieties. Acta Physiol Plant 32:565–574. doi: 10.1007/s11738-009-0433-x
  • Kikuchi K, Matsushita N, Suzuki K, Hogetsu T (2007) Flavonoids induce germination of basidiospores of the ectomycorrhizal fungus Suillus bovinus. Mycorrhiza 17:563–570. doi:10.1007/s00572-007-0131-8
  • Kim HK, Jang YH, Baek HS, Lee JH, Park MJ, Chung YS, Chung JI, Kim JK (2005) Polymorphism and expression of isoflavone synthase genes from soybean cultivars. Mol Cells 19:67–73
  • Kistner C, Winzer T, Pitzschke A et al (2005) Seven Lotus japonicus genes required for transcriptional reprogramming of the root during fungal and bacterial symbiosis. Plant Cell 17:2217–2229. doi:10.1105/tpc.105.032714
  • Kosslak RM, Joshi RS, Bowen BA, Paaren HE, Appelbaum ER (1990) Strain-specific inhibition of nod gene induction in Bradyrhizobium japonicum by flavonoid compounds. Appl Environ Microbiol 56:1333–1341
  • Li JY, Lee MT, Raba R, Amundson RG, Last RL (1993) Arabidopsis flavonoid mutants are hypersensitive to UV-6 irradiation. Plant Cell 5:171–179. doi:10.2307/3869583
  • Liu ZH, Xia M, Poovaiah BW (1998) Chimeric calcium/calmodulindependent protein kinase in tobacco: differential regulation by calmodulin isoforms. Plant Mol Biol 38:889–897. doi:10.1023/A:1006019001200
  • Liu A, Wang B, Hamel C (2004) Arbuscular mycorrhiza colonization and development at suboptimal root zone temperature. Mycorrhiza 14:93–101. doi:10.1007/s00572-003-0242-9
  • Liu R, Hu Y, Li J, Lin Z (2007) Production of soybean isoflavone genistein in non-legume plants via genetically modified secondary metabolism pathway. Metab Eng 9:1–7. doi:10.1016/ j.ymben.2006.08.003
  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–DDC(t) method. Methods 25:402–408. doi:10.1006/meth.2001.1262
  • Maier W, Schmidt J, Nimtz M, Wray V, Strack D (2000) Secondary products in mycorrhizal roots of tobacco and tomato. Phytochem 54:473–479. doi:10.1016/S0031-9422(00)00047-9
  • Misra P, Pandey A, Tewari SK, Nath P, Trivedi PK (2010) Characterization of isoflavone synthase gene from Psoralea corylifolia: a medicinal plant. Plant Cell Rep 29:747–755. doi: 10.1007/s00299-010-0861-5
  • Ohta D, Kanaya S, Suzuki H (2010) Application of Fourier-transform ion cyclotron resonance mass spectrometry to metabolic profiling and metabolite identification. Curr Opin Biotechnol 21:35–44. doi:10.1016/j.copbio.2010.01.012
  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775. doi:10.1038/nrmicro1987
  • Parniske M, Groth M, Takeda N et al (2010) NENA, a Lotus japonicus homolog of Sec13, is required for rhizodermal infection by arbuscular mycorrhiza fungi and rhizobia but dispensable for cortical endosymbiotic development. Plant Cell 22:2509–2526. doi:10.1105/tpc.109.069807
  • Peters NK, Verma DPS (1990) Phenolic-compounds as regulators of gene-expression in plant–microbe Interactions. Mol Plant Microbe Interact 3:4–8. doi:10.1094/MPMI-3-004
  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161
  • Pickford R, Miguens-Rodriguez M, Afzaal S, Speir P, Pergantis SA, Thomas-Oates JE (2002) Application of the high mass accuracy capabilities of FT-ICR-MS and Q-ToF-MS to the characterisation of arsenic compounds in complex biological matrices. J Anal Atom Spectrom 17:173–176. doi:10.1039/B109842j
  • Pumplin N, Mondo SJ, Topp S, Starker CG, Gantt JS, Harrison MJ (2010) Medicago truncatula Vapyrin is a novel protein required for arbuscular mycorrhizal symbiosis. Plant J 61:482–494. doi: 10.1111/j.1365-313X.2009.04072.x
  • Rausch C, Bucher M (2002) Molecular mechanisms of phosphate transport in plants. Planta 216:23–37. doi:10.1007/s00425-002-0921-3
  • Sarkar FH, Li Y, Wang Z, Padhye S (2010) Lesson learned from nature for the development of novel anti-cancer agents: implication of isoflavone, curcumin, and their synthetic analogs. Curr Pharm Des 16:1801–1812. doi:10.2174/138161210791208956
  • Scervino JM, Ponce MA, Erra-Bassells R, Vierheilig H, Ocampo JA, Godeas A (2005a) Arbuscular mycorrhizal colonization of tomato by Gigaspora and Glomus species in the presence of root flavonoids. J Plant Physiol 162:625–633. doi:10.1016/j.jplph.2004.08.010
  • Scervino JM, Ponce MA, Erra-Bassells R, Vierheilig H, Ocampo JA, Godeas A (2005b) Flavonoids exhibit fungal species and genus specific effects on the presymbiotic growth of Gigaspora and Glomus. Mycol Res 109:789–794. doi:10.1017/S0953756205002881
  • Scervino JM, Ponce MA, Della Monica I, Vierheilig H, Ocampo JA, Godeas A (2009) Development of arbuscular mycorrhizal fungi in the presence of different patterns of Trifolium repens shoot flavonoids. J Soil Sci Plant Nutr 9:102–115. doi:10.4067/S0718-27912009000200002
  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108. doi: 10.1038/nprot.2008.73
  • Siqueira JO, Safir GR, Nair MG (1991) Stimulation of vesiculararbuscular mycorrhiza formation and growth of white clover by flavonoid compounds. New Phytol 118:87–93. doi:10.1111/j.1469-8137.1991.tb00568.x
  • Smith SE, Smith FA, Jakobsen I (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol 133:16–20. doi:10.1104/pp.103.024380
  • Sreevidya VS, Rao CS, Sullia SB, Ladha JK, Reddy PM (2006) Metabolic engineering of rice with soybean isoflavone synthase for promoting nodulation gene expression in rhizobia. J Exp Bot 57:1957–1969. doi:10.1093/Jxb/Erj143
  • Stracke S, Kistner C, Yoshida S et al (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417:959–962. doi:10.1038/nature00841
  • Subramanian S, Stacey G, Yu O (2006) Endogenous isoflavones are essential for the establishment of symbiosis between soybean and Bradyrhizobium japonicum. Plant J 48:261–273. doi: 10.1111/j.1365-313X.2006.02874.x
  • Tian L, Dixon RA (2006) Engineering isoflavone metabolism with an artificial bifunctional enzyme. Planta 224:496–507. doi:10.1007/s00425-006-0233-0
  • Tsao R, Papadopoulos Y, Yang R, Young JC, McRae K (2006) Isoflavone profiles of red clovers and their distribution in different parts harvested at different growing stages. J Agric Food Chem 54:5797–5805. doi:10.1021/jf0614589
  • Tumova L, Tuma J (2011) The effect of UV light on isoflavonoid production in Genista tinctoria culture in vitro. Acta Physiol Plant 33:635–640. doi:10.1007/s11738-010-0566-y
  • Xie ZP, Staehelin C, Vierheilig H, Wiemken A, Jabbouri S, Broughton WJ, Vogellange R, Boller T (1995) Rhizobial nodulation factors stimulate mycorrhizal colonization of nodulating and nonnodulating soybeans. Plant Physiol 108:1519–1525. doi:10.1104/pp.108.4.1519
  • Yu O, Jung W, Shi J, Croes RA, Fader GM, McGonigle B, Odell JT (2000) Production of the isoflavones genistein and daidzein in non-legume dicot and monocot tissues. Plant Physiol 124:781–794. doi:10.1104/pp.124.2.781

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-15baa61e-7e8a-406a-b781-0addae5577bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.