PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 03 |

Tytuł artykułu

Trivalent chromium pretreatment alleviates the toxicity of oxidative damage in wheat plants exposed to hexavalent chromium

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Treating plants with abiotic or biotic factors can lead to the establishment of a unique primed state of defense. Primed plants display enhanced defense reactions upon further challenge with environmental stressors. Here, we report that trivalent chromium (Cr(III)) pretreatment can alleviate hexavalent chromium (Cr(VI)) toxicity in 2-week-old wheat plants. The data indicate that Cr(III)- pretreated wheat displayed longer survival times and less heavy metal toxicity symptoms under Cr(VI) exposure than the control. To investigate the possible mechanism from an antioxidant defense perspective, we determined the H₂O₂ and lipid peroxide content (TBARS), the activities of antioxidant enzymes (SOD, CAT, APX and GR) and the antioxidant metabolite content (ascorbate and glutathione content, AsA/DHA and GSH/GSSG ratios) in pretreated wheat roots. The results showed that 0.5 μM Cr(III) pretreatment can alleviate oxidative damage, such as H₂O₂ and TBARS accumulation, in root tissues compared to the control during the first 3 days of Cr(VI) exposure. Furthermore, we determined that this pretreatment can significantly increase the antioxidant enzyme activities and total ascorbate and glutathione contents compared to the control treatment. In addition, redox homeostasis declined slightly in pretreated wheat compared to the control in the presence of Cr(VI). We discuss a possible mechanism for Cr(III)-mediated protection of wheat.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

36

Numer

03

Opis fizyczny

p.787-794,fig.,ref.

Twórcy

autor
  • Plant Growth and Defense Signaling Laboratory, Department of Plant Pathology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
  • Nanjing Forestry University, Nanjing, 210037, China
autor
  • Plant Growth and Defense Signaling Laboratory, Department of Plant Pathology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
autor
  • Plant Growth and Defense Signaling Laboratory, Department of Plant Pathology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
  • Department of Life Science, Harbin Normal University, Harbin, 150025, China
autor
  • Plant Growth and Defense Signaling Laboratory, Department of Plant Pathology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
  • Institute of Biology, Hebei Academy of Sciences, Shijiazhaung, 050051, Hebei, China
autor
  • Plant Growth and Defense Signaling Laboratory, Department of Plant Pathology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China

Bibliografia

  • Boyd RS (2007) The defense hypothesis of elemental hyperaccumulation: status, challenges and new directions. Plant Soil 293:153–176
  • Bruce T, Matthes M, Napier J, Pickett J (2007) Stressful ‘‘memories’’ of plants: evidence and possible mechanisms. Plant Sci 173:603–608
  • Chatterjee J, Chatterjee C (2000) Phytotoxicity of cobalt, chromium and copper in cauliflower. Environ Poll 109:69–74
  • Chmielowska J, Veloso J, Gutiérrez J, Silvar C, Díaz J (2010) Cross-protection of pepper plants stressed by copper against a vascular pathogen is accompanied by the induction of a defense response. Plant Sci 178:176–182
  • Choudhury S, Panda S (2005) Toxic effect, oxidative stress and ultrastructural changes in moss Taxitheelium nepalense (Schwaegr.) Broth. under lead and chromium toxicity. Water Air Soil Poll 167:73–90
  • Conrath U, Pieterse CM, Mauch-Mani B (2002) Priming in plant–pathogen interactions. Trends Plant Sci 7:210–216
  • Deng B, Jin X, Yang Y, Lin Z, Zhang Y (2013) The regulatory role of riboflavin in drought tolerance in tobacco plant depends on ROS production. Plant Growth Regul. doi:10.1007/s10725-013-9858-8
  • Dhindsa RS, Dhindsa PP, Thorpe TA (1980) Leaf senescence correlated with increased levels of membrane permeability and lipid-peroxidation and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101
  • Dixit V, Pandey V, Shyam R (2002) Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea (Pisum sativum L. cv. Azad) root mitochondria. Plant Cell Environ 25:687–690
  • Fones H, Davis C, Rico A, Fang F, Smith J, Preston G (2010) Metal hyperaccumulation armors plants against disease. PLoS Pathog. doi:10.1371/journal.ppat.1001093
  • Fryer MJ, Andrews JR, Oxborough K, Blowers DA, Baker NR (1998) Relationship between CO₂ assimilation, photosynthetic electron transport, and active O₂ metabolism in leaves of maize in the field during periods of low temperature. Plant Physiol 116:571–580
  • Gay C, Collins J, Gebicki J (1999) Hydroperoxide assay with the ferric-xylenol orange complex. Anal Biochem 273:149–155
  • Gechev T, Gadjev I, Van Breusegem F, Inzé D, Dukiandjiev S, Toneva V, Minkov I (2002) Hydrogen peroxide protects tobacco from oxidative stress by inducing a set of antioxidant enzymes. Cell Mol Life Sci 59:708–714
  • Group P, Conrath U, Beckers G, Flors V, García-Agustín P, Jakab G, Mauch F, Newman M, Pieterse C, Poinssot B, Pozo M, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerili L, Mauch-Mani B (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062–1071
  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:180–198
  • Hermans C, Chen J, Ugent F, Ugent D, Verbruggen N (2011) Low magnesium status in plants enhances tolerance to cadmium exposure. New Phytol 192:428–436
  • Huang SH (2007) Repetition of hydrogen peroxide treatment induces a chilling tolerance comparable to cold acclimation in Mung bean. J Amer Soc Hort Sci 132:770–776
  • Ishibashi Y, Yamaguchi H, Yuasa T, Iwaya-Inoue M, Arima S, Zheng SH (2011) Hydrogen peroxide spraying alleviates drought stress in soybean plants. J Plant Physiol 168:1562–1567
  • Kuo S, Lai M, Lin C (2006) Influence of solution acidity and CaCl₂ concentration on the removal of heavy metals from metalcontaminated rice soils. Environ Poll 144:918–925
  • Li C, Jiang D, Wollenweber B, Li Y, Dai T, Cao W (2011) Waterlogging pretreatment during vegetative growth improves tolerance to waterlogging after anthesis in wheat. Plant Sci 180:672–678
  • Liang Y, Sun W, Zhu Y, Christie P (2007) Mechanisms of siliconmediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut 147:422–428
  • Lichtenthaler HK (1987) Chlorophyll and carotenoids: pigments of photosynthetic bio-membranes. Meth Enzymol 148:349–382
  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410
  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19
  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network in plants. Trends Plant Sci 9:490–498
  • Nagalakshmi N, Prasad MNV (2001) Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Sci 160:291–299
  • Noret N, Meerts P, Vanhaelen M, Santos AD, Escarré J (2007) Do metal-rich plants deter herbivores? A field test of the defense hypothesis. Oecologia 152:92–100
  • Panda S (2007) Chromium-mediated oxidative stress and ultrastructural changes in root cells of developing rice seedlings. J Plant Physiol 164:1419–1428
  • Panda SK, Choudhury S (2005) Chromium stress in plants. Braz J Plant Physiol 17:95–102
  • Poschenrieder C, Tolrà R, Barceló J (2006) Can metals defend plants against biotic stress? Trends Plant Sci 11:288–295
  • Rathinasabapathi B, Rangasamy M, Froeba J, Cherry R, McAuslane HJ, Capinera JL, Srivastava M, Ma LQ (2007) Arsenic hyperaccumulation in the Chinese brake fern (Pteris vittata) deters grasshopper (Schistocerca americana) herbivory. New Phytol 175:363–369
  • Shanker A, Pathmanabhan G (2004) Speciation dependent antioxidative response in roots and leaves of Sorghum (Sorghum bicolor L. Moench cv. CO 27) under Cr(III) and Cr(VI) stress. Plant Soil 265:141–151
  • Shanker AK, Djanaguiraman M, Sudhagar R, Chandrashekar CN, Pathmanabhan G (2004) Differential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in green gram (Vigna radiata (L.) R. Wilczek. cv CO 4) roots. Plant Sci 166:1035–1043
  • Shanker A, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753
  • Tausz M, Ŝircelj H, Grill D (2004) The glutathione system as a stress marker in plant ecophysiology is a stress-response concept valid? J Exp Bot 55:1955–1962
  • Ton J, Jakab G, Toquin V, Flors V, Lavicoli A, Maeder M, Métraux J, Mauch-Mani B (2005) Dissecting the ß-aminobutyric acid-induced priming phenomenon in Arabidopsis 17:987–999
  • Umezawa T, Shimizu K, Kato M, Ueda T (2000) Enhancement of salt tolerance in soybean with NaCl pretreatment. Physiol Plant 110:59–63
  • Vajpayee P, Tripathi RD, Rai UN, Ali MB, Singh SN (2000) Chromium (VI) accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content in Nymphaea alba L. Chemosphere 41:1075–1082
  • Zayed A, Terry N (2003) Chromium in the environment: factors affecting biological remediation. Plant Soil 249:139–156
  • Zhang J, Kirkham MB (1994) Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant Cell Physiol 35:785–791

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-1596de46-f240-47f6-bd0d-1aa663f4ff71
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.