PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 37 |

Tytuł artykułu

Methanogens in the environment: an insight of methane yield and impact on global climate change

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Methane is a most important greenhouse gas for planetary heating and it’s produced by methanogenic microorganisms as a metabolic byproduct and creates climate change. Methanogens are ancient organisms on earth found in anaerobic environments and methane is a key greenhouse gas concerned with methanogens. Therefore here is intense interest to writing this paper. A number of experiments have already conducted to study the methanogens in various environments such as rumen and intestinal system of animals, fresh water and marine sediments, swamps and marshes, hot springs, sludge digesters, and within anaerobic protozoa which utilize carbon dioxide in the presence of hydrogen and produce methane. The diversity of methanogens, belong to the domain Archaea and get involved in biological production of methane that catalyzes the degradation of organic compound as a part of global carbon cycle called methanogenesis. Majorly in this article we summaries the diversity of methanogens and their impact on global warming.

Wydawca

-

Rocznik

Tom

37

Opis fizyczny

p.51-60,ref.

Twórcy

  • Forest and Wood Protection Division, Institute of Wood Science and Technology, Bangalore, India
autor
  • Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp, Groenenborgerlaan, B2020, Belgium
  • Forest and Wood Protection Division, Institute of Wood Science and Technology, Bangalore, India
autor
  • Forest Biometry Division, Institute of Wood Science and Technology, Bangalore, India

Bibliografia

  • [1] Avery, G. B., Shannon, R. D., White, J. R., Martens, C. S., and Alperin, M. J. Biogeochemistry 62 (2003) 19–37.
  • [2] Bange, H. W., Bartell, U. H., Rapsomanikis, S., and Andreae, M. O. Global Biogeochem. Cy. 8 (1994) 465–480.
  • [3] Bange, H. W. Estuar. Coast. Shelf S 70 (2006) 361–374.
  • [4] Barber, R.D. and J.G. Ferry. Methanogenesis. eLS. (2001)
  • [5] Bartlett, K. B., Crill, P. M., Sass, R. L., Harriss, R. C., and Dise, N. B. J. Geophys. Res 97 (1992) 16645–16660.
  • [6] Baumgartner, M., Schilt, A., Eicher, O., Schmitt, J., Schwander, J., Spahni, R., Fischer, H., and Stocker, T. F. Biogeosciences 9 (2012) 3961–3977.
  • [7] Bergamaschi PC, Frankenberg C, Meirink JF, Krol M, Dentener F, Wagner T. Platt U, Kaplan JO, Ko¨rner S, Heimann M, Goede A. J Geophys Res 112 (2007).
  • [8] Bloom AA, Palmer PI, Fraser A, Reay DS, Frankenberg C. Science 327 (2010) 322–325.
  • [9] Bonacker, L.G., Baudner, S., Morschel, E., Bocher, R., and Thauer, R.K. Eur J Biochem 217 (1993) 587–595
  • [10] Boone, D. R. & Whitman, W. B. Int J Syst Bacteriol 38 (1988) 212–219.
  • [11] Borrel G, Jézéquel D, Biderre-Petit C, Morel-Desrosiers N, Morel JP, Peyret P, Fonty G, Lehours AC. Res Microbiol 162 (2011) 832-847.
  • [12] Bridgham, S.D, Cadillo-Quiroz H, Keller JK, Zhuang Q. Glob Chang Biol 2013; 19 (2013) 1325-1346.
  • [13] Butenhoff, C.L. andM.A.K. Khalil. Environ. Sci. Technol. 41 (2007) 4032–4037.
  • [14] Carberry CA, Waters SM, Kenny DA, Creevey CJ. 2014. Applied and Environmental Microbiology 80:2 (2014) 586–594.
  • [15] Cavicchioli R. Nature Reviews Microbiology 4 (2006) 331–343.
  • [16] Chasar, L. S., Chanton, J. P., Glaser, P. H., Siegel, D. I., and Rivers, J. S. Global Biogeochem. Cycl. 14 (2000) 1095–1108.
  • [17] Chen, H., Yao, S. P., Wu, N., Wang, Y. F., Luo, P., Tian, J. Q., Gao, Y. H., and Sun, G. J. Geophys. Res. 113 (2008) D12303, doi:10.1029/2006JD008072, 2008
  • [18] Christensen, T. R., Panikov, N., Mastepanov, M., Joabsson, A., Stewart, A., O¨ quist, M., Sommerkorn, M., Reynaud, S., and Svensson, B. Biogeochemistry 64 (2003) 337– 354.
  • [19] Covey, K. R., Wood, S. A., Warren, R. J., Lee, X. and Bradford, M. A. Geophys. Res. Lett. 39 (2012) L15705.
  • [20] Daniel H. Rothmana, Gregory P. Fournier, Katherine L. French, Eric J. Alm, Edward A. Boyle, Changqun Cao, and Roger E. Summons. PNAS. 111:15 (2014) 5462–5467.
  • [21] Deppenmeier, U. Prog Nucleic Acid Res Mol Biol 71 (2002) 223– 283.
  • [22] Ding, W. X., Cai, Z. C., and Wang, D. X. Atmos. Environ. 38 (2004) 751–759.
  • [23] Ding, W. X., Zhang, Y. H., and Cai, Z. C. Atmos. Environ. 44 (2010) 3894–3900.
  • [24] Dlugokencky EJ, Nisbet EG, Fischer R, Lowry D. Philos. T. Roy. Soc. A 369 (2011) 2058–2072.
  • [25] Eckburg, P.B., Bik, E.M., Bernstein, C.H.N., Purdom, E., Dethlefsen, L et al. (2005) Science 308 (2005)1635–1638.
  • [26] Ehhalt D, Prather M, Dentener F, Derwent R, Dlugokencky E, et al. Atmospheric Chemistry and Greenhouse Gases. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA, editors. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the IPCC. Cambridge, United Kingdom and New York: Cambridge University Press. (2001) 239–287.
  • [27] Elberson, M.A. and Sowers, K.R. Int J Syst Bacteriol 47 (1997) 1258-1261.
  • [28] Ellis JL, Kebreab E, Odongo NE, McBride BW, Okine EK, France J. Journal of Dairy Science. 90:7 (2007) 3456–3467.
  • [29] EPA. Methane and nitrous oxide emissions from natural sources Washington. EPA 430-R-10-001. U.S. Environmental Protection Agency. (2010) 194p.
  • [30] Etiope, G., Lassey, K. R., Klusman, R. W., and Boschi, E. Geophys. Res. Lett. 35 (2008) L09307.
  • [31] Ferry JG. FEMS Microbiol Rev 23 (1999) 13-38.
  • [32] Ferry, J.G. &K.A.Kastead. Methanogenesis. In Archaea: Molecular Cell Biology. R. Cavicchioli, Ed. (2007) 288–314. Washington, D.C.: ASM Press.
  • [33] Ferry, J.G. FEMS Microbiol Rev 23 (1999) 13–38
  • [34] Garcia JL, Patel BK, Ollivier B. Anaerobe 6 (2000) 205-226.
  • [35] Gunsalus, R.P., and Wolfe, R.S. J Biol Chem 255 (1980) 1891–1895.
  • [36] Hackstein, J.H.P. and Stumm, C.K. Proceedings of the National Academy of Sciences, USA 91 (1994) 5441-5445.
  • [37] Hansen, J., M. Sato, R. Ruedy, A. Lacis and V. Oinas. Proc. Natl. Acad. Sci. USA 97 (2000) 9875–9880.
  • [38] Hedderich, R., and Whitman, W. Physiology and bio- chemistry of the methane-producing Archaea. InThe Prokaryotes. Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., and Stackebrandt, E. (eds). New York, USA: Springer, pp. (2006) 1050–1079.
  • [39] Hoj L, Olsen RA, Torsvik VL (2005) Fems Microbiology Ecology 53 (2005) 89–101.
  • [40] Hook SE, Wright ADG, McBride BW. Archaea (2010)1–11.
  • [41] Horn, M.A., Matthies, C., Kusel, K., Schramm, A. and Drake, H.L. Applied and Environmental Microbiology 69 (2003) 74-83.
  • [42] Iino T, Tamaki H, Tamazawa S, Ueno Y, Ohkuma M, Suzuki K, Igarashi Y, Haruta S. Microbes Environ 28 (2013) 244-250.
  • [43] IPCC (2007) Climate change 2007. the physical science basis. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., et al (eds). Cambridge, UK and New York, NY, USA: Cambridge University Press
  • [44] J. G. Ferry. Biochemistry of Acetotrophic Methanogenesis. Handbook of Hydrocarbon and Lipid Microbiology. (2010) pp 357-367
  • [45] J.G.Ferry. Methanogenesis – Ecology, Physiology, Biochemistry & Genetics, 1994
  • [46] King EE, Smith RP, St-Pierre B, Wright ADG. Appl. Environ. Microbiol. 77 (2011) 5682–5687.
  • [47] Kirschke, et al. Nature Geoscience. (2013) doi:10.1038/ngeo1955
  • [48] Kittelmann S, Seedorf H, Walters WA, Clemente JC, Knight R, Gordon JI, Janssen PH. PLoS ONE 8:2 (2013):e47879
  • [49] Kumar S, et al. World J. Microbiol. Biotechnol 25 (2009)1557–1566.
  • [50] Kumaresan, D., Hery, M., Bodrossy, L., Singer, A.C., Stralis-Pavese,N.,Thompson,I.P.,andMurrell,J.C. Res Microbiol 162 (2011)1027–1032.
  • [51] Kusar D, Avgustin G (2010) FEMS Microbiol. Ecol. 74 (2010) 1–8.
  • [52] Liu Y, Whitman WB. Ann N Y Acad Sci 1125 (2008) 171-189
  • [53] Lowe SE, Jain MK and Zeikus JG. Microbiological Reviews 57 (1993)451–509.
  • [54] Lowe, D.C. A green source of surprise. Nature 439 (2006)148–149.
  • [55] Magdalena K. Stoeva, Stéphane Aris-Brosou, John Chételat, Holger Hintelmann, Philip
  • Pelletier, Alexandre J. Poulain. 2014. PLoS ONE 9:3 (2014) e89531
  • [56] McMichael AJ, Powles JW, Butler CD, Uauy R. The Lancet. 370:9594 (2007)1253–1263
  • [57] Mihajlovski A, Doré J, Levenez F, Alric M, Brugère JF. Environ Microbiol Rep 2 (2010) 272-280
  • [58] Mitsch WJ, Gosselink JG (2007) Wetlands, 4th edn. Wiley,Hoboken
  • [59] Morgan, R.M., Pihl, T.D., Nolling, J., and Reeve, J.N. J Bacteriol 179 (1997) 889–898.
  • [60] Murrell, J.C., and Whiteley, A.S. Stable Isotope Probing and Related Technologies. Washington, DC, USA: ASM Press (2011).
  • [61] Nazaries L., Tate K. R., Ross J. D., Singh J., et al. ISME J. 5 (2011) 1832–1836.
  • [62] Neufeld, J.D., Chen, Y., Dumont, M.G., and Murrell, J.C. Environ Microbiol 10 (2008) 1526–1535.
  • [63] Neufeld, J.D., Dumont, M.G., Vohra, J., and Murrell, J.C. Microb Ecol 53 (2007) 435–442.
  • [64] Ohkuma, M., Noda, S. and Kudo, T. FEMS Microbiology Letters 171 (1999) 147-53.
  • [65] Ollivier B. Anaerobe 6 (2000) 205–226.
  • [66] Paul K, Nonoh JO, Mikulski L, Brune A. Appl Environ Microbiol 78 (2012) 8245
  • [67] Petit,J.R.,J.Jouzel,D.Raynaudetal. Nature 399 (1999) 429–436
  • [68] Petrescu, A. M. R., van Beek, L. P. H., van Huissteden J., Prigent, C., Sachs, T., Corradi, C. A. R., Parmentier, F. J.W., and Dolman A. J. Global Biogeochem. Cycl. 24 (2010) GB4009
  • [69] Pihl, T.D., Sharma, S. and Reeve, J.N. Journal of Bacteriology 176 (1994)6384-6391
  • [70] Ramakrishnan, B., Lueders, T., Dunfield, P.F., Conrad, R. and Friedrich, M.W. FEMS Microbiology Ecology 37 (2001)175-186
  • [71] Reeburgh WS. Chem Rev 107 (2007) 486-513.
  • [72] Reeve, J.N., Nolling, J., Morgan, R.M., and Smith, D.R. J Bacteriol 179 (1997) 5975–5986
  • [73] Reim, A., Lüke, C., Krause, S., Pratscher, J., and Frenzel, P. ISME J 6 (2012) 2128–2139.
  • [74] Saengkerdsub S, Ricke SC. Crit Rev Microbiol 40 (2014) 97-116
  • [75] Schlesinger, W.H. Biogeochemistry: an analysis of global change. Academic Press, San Diego, CA, (1997) 588 p.
  • [76] Steigerwald, V.J., Stroup, D., Hennigan, A.N., Palmer, J.R., Pihl, T.D., Daniels, C.J., and Reeve, J.N. Methyl coenzyme-M reductase II genes and their close linkage to the methyl viologen-reducing hydrogenase-polyferredoxin operon in the genomes of Methanobacterium thermoautotrophicum and Methanothermus fervidus. In Industrial Microorganisms: Basic and Applied Molecular Genetics. Baltz, R.H., Hegeman, G.D., and Skatrud, P.L. (eds). Washington, DC, USA: American Society for Micro- biology Press, pp. (1993) 109–115.
  • [77] Takai, K. and Horikoshi, K. Genetics 152 (1999) 1285-1297.
  • [78] Thauer, R.K. Microbiology 144 (1998) 2377– 2406.
  • [79] Walter, B. P. and Heimann, M. Global Biogeochem. Cycl. 14 (2000) 745–765.
  • [80] Watanabe, K., Kodama, Y., Hamamura, N. and Kaku, N. Applied & Environmental Microbiology 68 (2002) 3899-3907.
  • [81] Westermann, P. Chemosphere 26 (1993) 321–328.
  • [82] Whalen SC. Environ Eng Sci 22 (2005)73–94
  • [83] Whiticar MJ, Faber E, Schoell M. Geochim Cosmochim Acta 50 (1986) 693-709
  • [84] Whiting, G. J. and Chanton, J. P. Nature 364 (1993) 794–795
  • [85] Woese CR, Magrum LJ, Fox GE. J Mol Evol 11 (1978) 245 – 252.
  • [86] Wright ADG, Klieve AV. Anim. Feed Sci. Technol. (2011)166–167:248 –253
  • [87] Yanagita K, Kamagata Y, Kawaharasaki M, Suzuki T, Nakamura Y, Minato H. Bioscience, Biotechnology and Biochemistry 64:8 (2000)1737–1742
  • [88] Yavitt, J.B., Yashiro, E., Cadillo-Quiroz, H., and Zinder, S.H. Biogeochemistry109 (2012)117–131
  • [89] Yusuf RO, Noor ZZ, Abba AH, Hassan MAA, Din MFM. Renewable and Sustainable Energy Reviews 16:7 (2012)5059–5070.

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-157cc065-79a4-45f7-aa61-b7aba7de723a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.