PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 1 |

Tytuł artykułu

Enhanced phytostabilization of metal-contaminated soil after adding natural mineral adsorbents

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
A major challenge that we currently face regards protecting the natural environment from the negative effects of heavy metals. Aided phytostabilization is among the successfully developing techniques used to immobilize heavy metals in contaminated soils. Using pot experiments, this study evaluated the potential application of natural mineral adsorbents as immobilizing agents in the aided phytostabilization of Zn-contaminated soil cultivated with Festuca rubra L. The research aimed to determine the infl uence of Zn in doses of 0 (control), 200, 400, and 600 mg.kg⁻¹ of soil, as well as chalcedonite and dolomite amendments on the content of Zn in the above-ground parts and roots of F. rubra. Zn contents in the tested parts of F. rubra differed signifi cantly in the case of applying chalcedonite and dolomite to the soil, as well as increasing concentrations of Zn. The application of dolomite to soil contaminated with Zn contributed to a signifi cant increase in pH values, and turned out to be most effective when it came to reducing total Zn content.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

1

Opis fizyczny

p.267-273,fig.,ref.

Twórcy

  • Department of Environmental Improvement, Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland

Bibliografia

  • 1. VAVERKOVA M., ADAMCOVA D. Heavy metals uptake by select plant species in the landfill area of Stepanovice, Czech Republic. Polish Journal of Environmental Studies, 23 (6), 2265, 2014.
  • 2. GWOREK B., DMUCHOWSKI W., KODA E., MARECKA M., BACZEWSKA A.H., BRĄGOSZEWSKA P., SIECZKA A., OSIŃSKI P. Impact of the municipal solid waste Łubna landfill on environmental pollution by heavy metals. Water, 8 (10), 470, 2016.
  • 3. WYSZKOWSKI M., RADZIEMSKA M. Assessment of tri- and hexavalent chromium phytotoxicity on Oats (Avena Water Air and Soil Pollution, 244, 1619-1632, 2013.
  • 4. ZHANG M., FANG T., PU G., SUN X., ZHOU X., CAI Q. Xenobiotic metabolism of plant secondary compounds in the English grain aphid, Sitobion avenae (F.) (Hemiptera: Aphididae). Pesticide Biochemistry and Physiology, 7 (1), 44, 2013.
  • 5. LABIDI S., FIRMIN S., VERDIN A., BIDAR G., LARUELLE F., DOUAY F., SHIRALI P., FONTAINE J., SAHRAOUI A.L.H. Nature of fly ash amendments differently influences oxidative stress alleviation in four forest tree species and metal trace element phytostabilization in aged contaminated soil: A long-term field experiment. Ecotoxicology and Environmental Safety, 138, 190, 2017.
  • 6. RADZIEMSKA M., MAZUR Z., JEZNACH J. Influence of applying halloysite and zeolite to soil contaminated with nickel on the content of selected elements in Maize (Zea mays L.). Chemical Engineering Transactions, 32, 301, 2013.
  • 7. LI Z., ZHU W., GUO X. Effects of combined amendments on growth and heavy metal uptake by Pakchoi (Brassica chinensis L.) planted in Contaminated soil. Polish Journal of Environmental Studies, 24 (6), 2493, 2015.
  • 8. LI Y., WANG Q., WANG L., HE L.Y., SHENG X.F. Increased growth and root Cu accumulation of Sorghum sudanense by endophytic Enterobacter sp. K3-2: Implications for Sorghum sudanense biomass production and phytostabilization. Ecotoxicology and Environmental Safety, 124, 163, 2016.
  • 9. GAJIĆ G., DJURDJEVIĆ L., KOSTIĆ O., JARIĆ S., MITROVIĆ M., STEVANOVIĆ B., PAVLOVIĆ P. Assessment of the phytoremediation potential and an adaptive response of Festuca rubra L. sown on fly ash deposits: Native grass has a pivotal role in ecorestoration management. Ecological Engineering, 93, 250, 2016.
  • 10. KLUTE A. Methods of soil analysis. Madison: American Society of Agronomy. Agronomy Monograph, 9, 1996.
  • 11. RIEHM H. The ammonium lactate acetic acid method for determination of soluble phosphorous acid in soil.” Agrochimica, 3, 49, 1958 [In German].
  • 12. LITYŃSKI T., JURKOWSKA H., GORLACH E. Chemical and agriculture analysis. PWN, Warsaw, 129, 1976 [in Polish].
  • 13. LIANG S.X., JIN Y., LIU W., LI X., SHEN S.G., DING L. Feasibility of Pb phytoextraction using nano-materials assisted ryegrass: Results of a one-year field-scale experiment. Journal of Environmental Management, 190, 170, 2017.
  • 14. RADZIEMSKA M., MAZUR Z., FRONCZYK J., MATUSIK J. Co-remediation of Ni-contaminated soil by halloysite and Indian mustard (Brassica juncea L.).Clay Minerals, 51, 489, 2016.
  • 15. WYSZKOWSKI M., RADZIEMSKA M. Effects of chromium (III and VI) on spring barley and maize biomass yield and content of nitrogenous compounds. Journal of Toxicology and Environmental Health, Part A, 73, 1274, 2010.
  • 16. YADAV S.K. Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South African Journal of Botany, 76, 167, 2010.
  • 17. AMARI T., GHNAYA T., ABDELLY C. Nickel, cadmium and lead phytotoxicity and potential of halophytic plants in heavy metal extraction. South African Journal of Botany, 111, 99, 2017.
  • 18. XIAO R., SUN X., WANG J., FENG J., LI R., ZHANG Z., WANG J.J., AMJAD A. Characteristics and phytotoxicity assay of biochars derived from a Zn-rich antibiotic residue. Journal of Analytical and Applied Pyrolysis, 113, 575, 2015.
  • 19. TODESCHINI V., LINGUA G., D’AGOSTINO G., CARNIATO F., ROCCOTIELLO E., BERTA G. Effects of high zinc concentration on poplar leaves: a morphological and biochemical study. Environmental and Experimental Botany, 71 (1), 50, 2011.
  • 20. VIJAYARENGAN P., MAHALAKSHMI G. Zinc toxicity in tomato plants. World Applied Sciences Journal, 24 (5), 649, 2013.
  • 21. NAVARRO-LEÓN E., ALBACETE A., TORRE-GONZÁLEZ A., RUIZ J.M., BLASCO B. Phytohormone profi le in Lactuca sativa and Brassica oleracea plants grown under Zn deficiency. Phytochemistry, 130, 85, 2016.
  • 22. RADZIEMSKA M., MAZUR Z. Content of selected heavy metals in Ni-contaminated soil following the application of halloysite and zeolite. Journal of Ecological Engineering, 17 (3), 125, 2016.
  • 23. WYSZKOWSKI M., RADZIEMSKA M. Influence of chromium (III) and (VI) on the concentration of mineral elements in oat (Avena sativa L.). Fresenius Environmental Bulletin, 22 (4), 979, 2013.
  • 24. VENKATACHALAM P., PRIYANKA N., MANIKANDAN K., GANESHBABU I., INDIRAARULSELVI P., GEETHA N., MURALIKRISHNA K. Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiology and Biochemistry, 110,118, 2017.
  • 25. BŘENDOVÁ K., ZEMANOVÁ V., PAVLÍKOVÁ D., TLUSTOŠ P. Utilization of biochar and activated carbon to reduce Cd, Pb and Zn phytoavailability and phytotoxicity for plants. Journal of Environmental Management, 181, 637, 2016.
  • 26. FERNÁNDEZ S., POSCHENRIEDER C., MARCENÒ C., GALLEGO J.R., JIMÉNEZ-GÁMEZ D., BUENO A., AFIF E. Phytoremediation capability of native plant species living on Pb-Zn and Hg-As mining wastes in the Cantabrian range, north of Spain. Journal of Geochemical Exploration, 174, 10, 2017.
  • 27. PUSCHENREITER M., GRUBER B., WENZEL W.W., SCHINDLEGGER Y., HANN S., SPANGL B., WALTER SCHENKEVELD D.C., KRAEMER S.M., OBURGER E. Phytosiderophore-induced mobilization and uptake of Cd, Cu, Fe, Ni, Pb and Zn by wheat plants grown on metalenriched soils. Environmental and Experimental Botany, 138, 67, 2017.
  • 28. TRIPATHI D.K., SINGH S.S., SINGH S., PANDEY R., SINGH V.P., SHARMA N.C., PRASAD S.M., DUBEY N.K., CHAUHAN D.K. An overview on manufactured nanoparticles in plants: Uptake, translocation, accumulation and phytotoxicity. Plant Physiology and Biochemistry, 110, 2, 2017.
  • 29. RADZIEMSKA M., MAZUR Z., FRONCZYK J., JEZNACH J. Effect of zeolite and halloysite on accumulation of trace elements in maize (Zea Mays L.) in nickel contaminated soil. Fresenius Environmental Bulletin, 23 (12a), 3140, 2014.
  • 30. ABAD-VALLE P., ÁLVAREZ-AYUSO E., MURCIEGO A., PELLITERO E. Assessment of the use of sepiolite amendment to restore heavy metal polluted mine soil. Geoderma, 280, 57, 2016.
  • 31. REIJONEN I., HARTIKAINEN H. Oxidation mechanisms and chemical bioavailability of chromium in agricultural soil – pH as the master variable. Applied Geochemistry, 74, 84, 2016.
  • 32. SHAHEEN S.M., RINKLEBE J. Impact of emerging and low cost alternative amendments on the (im)mobilization and phytoavailability of Cd and Pb in a contaminated floodplain soil. Ecological Engeneering, 74, 319, 2015.
  • 33. WANG A. S., ANGLE J. S., CHANEY R. L., DELORME T. A., REEVES R.D. Soil pH effects on uptake of Cd and Zn by Thlaspi caerulescens. Plant and Soil, 281 (1-2), 325, 2006

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-15676733-faf6-4e96-ab75-50e7bc95d43b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.