Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 64 |
Tytuł artykułu

Fine roots biomass and morphology in a chronosequence of young Pinus sylvestris stands growing on a reclaimed lignite mine spoil heap

Treść / Zawartość
Warianty tytułu
Języki publikacji
The morphology of fine roots ( 2 mm diameter) as well as fine and coarse root biomass was investigated in a chronosequence consisting of 6-, 9-, 11-, 15-, 17- and 20-year-old Scots pine (Pinus sylvestris) stands growing on a reclaimed lignite mine spoil heap. Core method of destructive root sampling was used to establish whether root morphology and biomass varied with stand age in the upper 20 cm of soil. Fine root biomass ranged from 0.78 to 3.11 Mg ha-1, coarse root biomass ranged from 0.82 to 2.74 Mg ha-1, whereas root necromass ranged from 1.03 Mg ha-1 to 2.87 Mg ha-1 in the chronosequence studied. Fine root diameter as well as length, projected area, and surface area expressed per unit area increased significantly with stand age. Moreover, our study revealed that when stand age increases, specific fine root biomass increases, whereas specific root length and area decreases. The results support our hypothesis that stand age has an effect on standing fine root biomass and morphology.
Opis fizyczny
  • Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kornik, Poland
  • Bakker M.R., Turpault M.-P., Huet S., Nys C. 2008. Root distribution of Fagus sylvatica in a chronosequence in western France. Journal of Forest Research 13: 176–184.
  • Bauhus J., Messier C. 1999a. Soil exploitation strategies of fine roots in different tree species of the southern boreal forest of eastern Canada. Canadian Journal of Forest Research 29: 260–273.
  • Bauhus J., Messier C. 1999b. Evaluation of fine root length and diameter measurements obtained using RHIZO image analysis. Agronomy Journal 91: 142–147.
  • Børja I., De Witt H.A., Steffenrem A., Majdi H. 2008. Stand age and fine root biomass, distribution and morphology in a Norway spruce chronosequence in southeast Norway. Tree Physiology 28: 773–784.
  • Brunner I., Godbold D.L. 2007. Tree roots in a changing world. Journal of Forest Research 12: 78–82.
  • Claus A., George E. 2005. Effect of stand age on fine-root biomass and biomass distribution in three European forest chronosequences. Canadian Journal of Forest Research 35: 1617–1625.
  • Concise Statistical Yearbook of Poland 2007. Główny Urząd Statystyczny, Warszawa.
  • Craine J.M. 2006. Competition for nutrients and optimal root allocation. Plant and Soil 285: 171–185.
  • Dauer J.M., Withington J.M., Oleksyn J., Chorover J., Chadwick O.A., Reich P.B., Eissenstat D.M. 2009. A scanner-based approach to soil profile-wall mapping of root distribution. Dendrobiology 62: 35–40.
  • Eissenstat D.M. 1992. Cost and benefits of constructing roots of small diameter. Journal of Plant Nutrition 15: 763–782.
  • Eissenstat D.M., Wells C.E., Yanai R.D., Whitbeck J.L. 2000. Building roots in changing environment: implications for root longevity. New Phytologist 147: 33–42.
  • Finér L., Helmisaari H.-S., Lõhmus K., Majdi H., Brunner I., Børja I., Eldhuset T., Godbold D., Grebenc T., Konôpka B., Kraigher H., Möttönen M.-R., Ohashi M., Oleksyn J., Ostonen I., Uri V., Vanguelova E. 2007. Variation in fine root biomass of three European tree species: Beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.). Plant Biosystems 141: 394–405.
  • Fitter A.H. 1987. An architectural approach to the comparative ecology of plant root systems. New Phytologist 106 (Suppl): 61–77.
  • Fujimaki R., Tateno R., Tokuchi N. 2007. Root development across a chronosequence in a Japanese cedar (Cryptomeria japonica D. Don) plantation. Journal of Forest Research 12: 96–102.
  • Grams T.E.E., Kozovits A.R., Reiter I.M., Winkler J.B., Sommerkorn M., Blaschke H., Häberle K.-H., Matyssek R. 2002. Quantifying competitiveness in woody plants. Plant Biology 4: 153–158.
  • Helmisaari H.-S., Derome J., Nöjd P., Kukkola M. 2007. Fine roots biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands. Tree Physiology 27: 1493–1504.
  • Helmisaari H.-S., Hallbäcken L. 1999. Fine-root biomass and necromass in limed and fertilized Norway spruce (Picea abies (L.) Karst.) stands. Forest Ecology and Management 119: 99–110.
  • Helmisaari H.-S., Makkonen K., Kellomäki S., Valtonen E., Mälkönen E. 2002. Below- and aboveground biomass, production and nitrogen use in Scots pine stands in eastern Finland. Forest Ecology and Management 165: 317–326.
  • Helmisaari H.-S., Ostonen I., Lõhmus K., Derome J., Lindroos A.-J., Merilä P., Nöjd P. 2009. Ectomycorrhizal root tips in relation to site and stand characteristics in Norway spruce and Scots pine stands in boreal forests. Tree Physiology 29: 445–456.
  • Hodge A. 2004. The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytologist 162: 9–24.
  • Jackson R.B., Mooney H.A., Schulze E.-D. 1997. A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of the National Academy of Sciences USA 94: 7362–7366.
  • Jagodziński A.M., Kałucka I. 2008. Age-related changes in leaf area index of young Scots pine stands. Dendrobiology 59: 57–65.
  • Jagodziński A.M., Oleksyn J. 2009a. Ekologiczne konsekwencje hodowli drzew w różnym zagęszczeniu. I. Wzrost i rozwój drzewostanu. Ecological consequences of silviculture at variable stand densities. I. Stand growth and development. Sylwan 153: 75–85.
  • Jagodziński A.M., Oleksyn J. 2009b. Ekologiczne konsekwencje hodowli drzew w różnym zagęszczeniu. II. Produkcja i alokacja biomasy, retencja biogenów. Ecological consequences of silviculture at variable stand densities. II. Biomass production and allocation, nutrient retention. Sylwan 153: 147–157.
  • Jagodziński A.M., Oleksyn J. 2009c. Ekologiczne konsekwencje hodowli drzew w różnym zagęszczeniu. III. Stabilność drzewostanu, fitoklimat, różnorodność biologiczna. Ecological consequences of silviculture at variable stand densities. III. Stand stability, phytoclimate and biodiversity. Sylwan 153: 219–230.
  • Janssens I.A., Sampson D.A., Curiel-Yuste J., Carrara A., Ceulemans R. 2002. The carbon cost of fine root turnover in a Scots pine forest. Forest Ecology and Management 168: 231–240.
  • Józefaciukowa W., Dobrowolska D., Farfał D. 1995. Ilościowa i jakościowa ocena korzeni drobnych sosny zwyczajnej w gradiencie skażenia środowiska leśnego. Prace Instytutu Badawczego Leśnictwa, Ser. B, 24: 47–61.
  • Kałucka I. 2009. Macrofungi in the secondary succession on the abandoned farmland near the Białowieża old-growth forest. Monographiae Botanicae 99: 155 pp.
  • Kowalik S., Krzaklewski W., Wójcik J. 1999. Skuteczność neutralizacji toksycznie kwaśnych gruntów na zwałowisku zewnętrznym KWB „Bełchatów”. Effectiveness of neutralisation of toxically acidic soils on the outer dumping ground of the ,,Bełchatów” brown coal mine. Inżynieria Środowiska 4: 395–410.
  • Krzaklewski W. 2005. Rekultywacja w KWB „Bełchatów” – zamierzenia, stan i perspektywy. Reclamation in the “Bełchatów” opencast brown coa mine. Projects, conditions and perspectives. Prace Naukowe Instytutu Górnictwa Politechniki Wrocławskiej 112, Konferencje 44, 411–421.
  • Leuschner C., Hertel D., Schmid I., Koch O., Muhs A., Hölscher D. 2004. Stand fine root biomass and fine root morphology in old-growth beech forests as a function of precipitation and soil fertility. Plant and Soil 258: 43–56.
  • Litton C.M., Ryan M.G., Tinker D.B., Knight D.H. 2003. Belowground and aboveground biomass in young postfire lodgepole pine forests of contrasting tree density. Canadian Journal of Forest Research 33: 351–363.
  • Lõhmus K., Oja T., Lasn R. 1989. Specific root area: a soil characteristic. Plant and Soil 119: 245–249.
  • Makkonen K., Helmisaari H.-S. 2001. Fine root biomass and production in Scots pine stands in relation to stand age. Tree Physiology 21: 193–198.
  • Meyer F.H. 1987. Der Verzweigungsindex, ein Indikator für Schäden am Feinwurzelsystem. Forstwissenschaftlisches Centralblatt 106: 84–92.
  • Norby R.J., Jackson R.B. 2000. Root dynamics and global change: seeking an ecosystem perspective. New Phytologist 147: 3–12.
  • Oleksyn J., Reich P.B., Chalupka W., Tjoelker M.G. 1999. Differential above- and below-ground biomass accumulation of European Pinus sylvestris populations in a 12-year-old provenance experiment. Scandinavian Journal of Forest Research 14: 7–17.
  • Ostonen I., Lõhmus K., Lasn R. 1999. The role of soil conditions in fine root ecomorphology in Norway spruce (Picea abies (L.) Karst.). Plant and Soil 208: 283–292.
  • Ostonen I., Püttsepp Ü., Biel C., Alberton O., Bakker M.R., Lõhmus K., Majdi H., Metcalfe D., Olsthoorn A.F.M., Pronk A., Vanguelova E., Weih M., Brunner I. 2007. Specific root length as an indicator of environmental change. Plant Biosystems 141: 426–442.
  • Ostonen I., Tedersoo L., Suvi T., Lõhmus K. 2009. Does the fungal species drive ectomycorrhizal root traits in Alnus spp.? Canadian Journal of Forest Research 39: 1787–1796.
  • Ovington J.D. 1957. Dry-matter production by Pinus sylvestris L. Annals of Botany 21: 287–314.
  • Pająk M., Krzaklewski W. 2007. Selected physical properties of initial soils on the outside spoil bank of the Belchatow brown coal mine. Journal of Forest Science 53: 308–313.
  • Persson H. 1978. Root dynamics in a young Scots pine stand in Central Sweden. Oikos 30: 508–519.
  • Simard S.W., Jones M.D., Durall D.M. 2002. Carbon and nutrient fluxes within and between mycorrhizal plants. In: van der Heijden M.G.A., Sanders I.R. (Eds.). Mycorrhizal ecology. Springer, Berlin, Germany, pp. 33–74.
  • van der Heijden E.W., Kuyper T.W. 2003. Ecological strategies of ECM fungi of Salix repens: Root manipulations versus root replacement. Oikos 103: 668–680.
  • Vanninen P., Mäkelä A. 1999. Fine root biomass of Scots pine stands differing in age and soil fertility in southern Finland. Tree Physiology 19: 823–830.
  • Vanninen P., Ylitalo H., Sievänen R., Mäkelä A. 1996. Effects of age and site quality on the distribution of biomass in Scots pine (Pinus sylvestris L.). Trees 10: 231–238.
  • Vogt K.A., Persson H. 1991. Measuring growth and development of roots. In: Lassoie J.P., Hinckley T.M. (Eds.). Techniques and Approaches in Forest Tree Ecophysiology. CRC Press, Boca Raton, pp. 477–501.
  • Vogt K.A., Vogt D.J., Moore E.E., Fatuga M.B., Redlin M.R., Edmonds R.L. 1987. Conifer and angiosperm fine-root biomass in relation to stand age and site productivity in Douglas-fir forests. Journal of Ecology 75: 857–870.
  • Vogt K.A., Vogt D.J., Palmiotto P.A., Boon P., O’Hara J., Asbjornsen H. 1996. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant and Soil 187: 159–219.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.