Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 20 | 2 |

Tytuł artykułu

Wake-blade interaction in steam turbine stages


Warianty tytułu

Języki publikacji



The article discusses the phenomenon of stator Wake/Rotor cascade (W/R) interaction in a steam turbine stage, and the ability to capture it in turbine stage design calculations making use of standard numerical codes. Firstly, the W/R interaction is analysed by comparing its real, experimentally recorded course with the numerical results obtained using vortex theory models and methods. This part of the analysis ends with formulating a conclusion about stochastic nature of the W/R interaction and indicating its reason, which is the vortex structure of the stator wake. Next, a question is discussed whether and how this stochastic nature of the examined phenomenon can be taken into account in calculations of Reynolds Averaged Navier-Stokes (RANS) equations. Differences are indicated between the uniform pattern of the stator wake obtained using a RANS code and the vortex structure of the real wake. It is concluded, however, that despite these differences the RANS results correctly reflect the time-averaged course of the real W/R interaction, and the process of averaging the flow parameters on the sliding plane between stator and rotor calculation areas can be treated as sort of “numerical averaging” of different realisations of the W/R interaction

Słowa kluczowe








Opis fizyczny



  • Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-952 Gdansk, Poland


  • 1. Goldstein R.J., Spores R.A: Turbulent transport on the endwall in the region between adjacent turbine blades, ASME J. Heat Transfer, vol. 110, pp. 862-869, 1988.
  • 2. Doerffer P., Rachwalski J., Magagnato F.: Numerical Investigation of the Secondary Flow Development in Turbine Cascade, TASK Quarterly, vol. 5, pp. 165-178, 2001.
  • 3. Dawes, W. N.: Current & Future Developments in Turbomachinery CFD, Proceedings, 2nd European Conference on Turbomachinery – Fluid Dynamics and Thermodynamics, Antwerpen, March 5-3, 1997.
  • 4. Meyer, R. X.: The Effect of Wakes on the Transient Pressure and Velocity Distributions in Turbomachines, ASME Journal of Basic Engineering, vol. 80, pp. 1544-1552, 1958.
  • 5. Smith, L. H.: Wake Dispersion in Turbomachines, ASME Journal of Basic Engineering, vol. 88, September, pp. 688-690, 1966.
  • 6. Prandtl L.: Über die Entstehung von Wirbeln in der idealen Flussigkeit, mit Anwendung auf die Tragflugelntheorie und andere Aufgaben, In Gesammt. Abhandl. T. II, Springer-Verlag Berlin Gottingen Heidelberg, 1961, S. 696-513, 1924.
  • 7. Lienhart, W.: Berechnung der instationären Strömung durch gegeneinander bewegte Schaufelgitter und der Schaufelkraf tschwankungen, VDI-Forschungsheft, vol. 562, VDI Verlag, Düsseldorf, 1974.
  • 8. Krammer, P.: Computation of Unsteady Blade Forces in Turbomachines by Means of Potential Flow Theory and by Simulating Viscous Wakes, ASME Paper 82-GT-198, 1982.
  • 9. Korakianitis, T.: On the Propagation of Viscous Wakes and Potential Flow in Axial-Turbine Cascades, ASME Journal of Turbomachinery, vol. 115, pp.118-127, 1993.
  • 10. Hodson, H. P., and Dawes, W. N.: On the Interpretation of Measured Profile Losses in Unsteady Wake –Turbine Blade Interaction Studies, ASME Journal of Turbomachinery, vol. 120, pp. 276-284, 1998.
  • 11. Michelassi, V., Martelli, F., Dénos, R., Arts, T., and Sieverding, C. H.: Unsteady heat Transfer in Stator-Rotor Interaction by Two-Equation Turbulence Model, ASME Journal of Turbomachinery, vol. 121, pp. 436-447, 1999.
  • 12. Solomon, W. J., Walker, G. J., and Hughes, J. D.: Periodic Transition on Axial Compressor Stator: Incidence and Clocking Effects: Part II - Transition Onset Predictions, ASME Journal of Turbomachinery, vol. 121, pp. 408-415, 1999.
  • 13. Dénos, R., Arts, T., Paniagua, G., Michelassi, V., and Martelli, F.: Investigation of the Unsteady Rotor Aerodynamics in a Transonic Turbine Stage, ASME Journal of Turbomachinery, vol. 123, pp. 81-89, 2001.
  • 14. Sieverding, C. H., and Heinemann, H.: The Influence of Boundary Layer State on Vortex Shedding From Flat Plates and Turbine Cascades, ASME Journal of Turbomachinery, vol. 112, pp. 181-187, 1990.
  • 15. Cicatelli, G., and Sieverding, C. H.: The Effect of Vortex Shedding on the Unsteady Pressure Distribution Around the Trailing Edge of a Turbine Blade, ASME Journal of Turbomachinery, vol. 119, pp. 810-819, 1997.
  • 16. Mensink, C.: Numerical Prediction of Periodic Vortex Shedding in Subsonic and Transonic Turbine Cascade Flows, International Journal for Numerical Methods in Fluids, vol. 22, pp. 881-897, 1996.
  • 17. Currie, T. C., and Carscallen, W. E.: Simulation of Trailing Edge Vortex Shedding in a Transonic Turbine Cascade, ASME Journal of Turbomachinery, vol. 120, pp. 10-19, 1998.
  • 18. Arnone, A., Marconcini, M., and Pacciani, R.: On the Use of Dual Time Stepping in Unsteady Turbomachinery Flow Calculations, ERCOFTAC Bulletin No. 42, September, pp. 3742, 1999.
  • 19. Magagnato, F.: Unsteady flow past a turbine blade using non-linear two-equation turbulence models, Proceedings III European Conference on Turbomachinery: Fluid Dynamics and Thermodynamics, London, March, pp. 221-230, 1999.
  • 20. Lin, C. C.: On the Motion of Vortices in Two Dimensions, University Toronto Press, Toronto, Canada, 1943.
  • 21. Basu, B.C.; Hancock, G.J.: The unsteady motion of a twodimensional airfoil in incompressible inviscid flow, Journal of Fluid Mechanics, vol. 87, pp. 159-178, 1978.
  • 22. Prosnak, W. J.: Computation of Fluid Motions in Multiply Connected Domains, Wissenschaft + technik series, G. Braun, Karlsruhe, Germany, 1987.
  • 23. Milne-Thomson, L.M.: Theoretical Hydrodynamics, London, III edition, 1968.
  • 24. Swirydczuk, J.: A numerical analysis of changes in the conditions of the flow over two identical airfoils caused by the passing vortex structure (in Polish), Reports of the PAS Institute of Fluid-Flow Machinery, No. 94, pp. 3-17, 1992.
  • 25. Swirydczuk, J.: Modelling the interaction of an isolated free vortex with a finite cascade of airfoils with the aid of conformal mapping, Reports of the PAS Institute of Fluid-Flow Machinery, No. 94, pp. 95-111, 1992.
  • 26. Swirydczuk, J.: The Flow Through a Blade Cascade With a Local Shape Deformation, ZAMM, 77, vol. 5, pp. 399-402, 1997.
  • 27. Swirydczuk J.: Vortex Dynamics of the Stator Wake – Rotor Cascade Interaction, ASME Journal of Fluids Engineering, vol. 124, pp. 400-412, 2002.
  • 28. Swirydczuk, J.: The interaction of vortex structures with the approached profiles, (in Polish) D.Sc. thesis, Scientific Reports of the Institute of Fluid-Flow Machinery, No. 533/1492, 233 p, 2004.
  • 29. Swirydczuk, J.: CFD modelling of turbine stage stator/rotor interaction, TASK Quarterly, vol. 10, No. 2, pp. 113-124, 2006.
  • 30. Swirydczuk J.: Analysing Stator/Rotor Interactions in Rotating Machines, Awiacijonno-Kosmiczeskaja Technika i Technołogija, vol. 8/44, pp. 116-120, 2007.
  • 31. Sarpkaya, T.: Computational Methods With Vortices - The 1988 Freeman Scholar Lecture, ASME Journal of Fluids Engineering, vol. 111, pp. 5-52, 1989.
  • 32. Karman, T. von, and Rubach, H.: Űber den Mechanismus des Flűssigkeits- und Luftwiderstandes, Physikalische Zeitschrift, vol. 13, pp. 49-59, 1912.
  • 33. Kost, F., Hummel, F., and Tiedemann, M.: Investigation of the Unsteady Rotor Flow Field in a Single HP Turbine Stage, Proceedings, ASME TURBO EXPO 2000, May 8-11, Munich, Germany, 2000.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.