PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 84 | 4 |
Tytuł artykułu

Modeling the potential distribution of three lichens of the Xanthoparmelia pulla group (Parmeliaceae, Ascomycota) in Central Europe

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents models of potential geographical distribution of Xanthoparmelia delisei, X. loxodes, and X. verrucu-lifera in Central Europe. The models were developed with MaxEnt (maximum entropy algorithm) based on 224 collection localities and bioclimatic variables. The applied method enabled to identify the areas where climatic conditions are the most suitable for modeled species outside their known localities. According to obtained model, high potential distribution of the X. delisei and X. loxodes was found in the northern and northeastern Poland, when areas most suitable for X. verruculifera were placed in the south, especially in the Carpathians. Model also suggests that potential distribution of X. delisei could be wider than known data on its occurrence and extend to Lithuania, Belarus and the Czech Republic. MaxEnt modeling of X. loxodes showed the widest potential distribution for this species in Central Europe with the best regions in Lithuania. Potential distribution in all models was strongly influenced by precipitation-related variables. All the modelled species prefer areas where precipitation in the coldest quarter is very low.
Wydawca
-
Rocznik
Tom
84
Numer
4
Opis fizyczny
p.431-438,fig.,ref.
Twórcy
  • Department of Botany and Plant Ecology, Wroclaw University of Environmental and Life Sciences, pl.Grunwaldzki 24a, 50-363 Wroclaw, Poland
  • Department of Botany and Plant Ecology, Wroclaw University of Environmental and Life Sciences, pl.Grunwaldzki 24a, 50-363 Wroclaw, Poland
autor
  • Laboratory of Lichenology, Department of Botany, Institute of Environmental Biology, University of Wroclaw, 50-328 Wroclaw, Poland
Bibliografia
  • 1.Blanco O, Crespo A, Elix JA, Hawksworth DL, Lumbsch HT. A new classification of parmelioid lichens containing Xanthoparmelia-type lichenan (Ascomycota: Lecanorales) based on morphological and molecular evidence. Taxon. 2004;53:959-975. http://dx.doi. org/10.2307/4135563
  • 2.Crespo A, Lumbsch HT, Mattsson JE, Blanco O, Divakar PK, Articus K, et al. Testing morphology based hypotheses of phylogenetic relationships in Parmeliaceae (Ascomycota) using three ribosomal markers and the nuclear RPB1 gene. Mol Phylogenet Evol. 2007;44:812-824. http://dx.doi.org/10.1016/j.ympev.2006.11.029 equally in different types of environments, therefore avoiding the so-called environmental biases [33]. In the case of Xanthoparmelia species this rule was maintained, because the specimens originated from different ecosystems, both wooded and open, such as meadows, agricultural areas, roadsides, edges of woods, areas of quarry and cemeteries. Moreover, the use of a sufficiently large sets of data allows for an effective modeling of the species distribution, even if some climatic biases appeared during their collection [37]. Thus, it seems that the obtained models can suggest a real distribution of species of Xanthoparmelia pulla group in Central Europe. The next step towards a validation of the obtained models could be field studies that would confirm the presence of the investigated taxa in new areas that represent the most suitable climatic conditions.To date, a number of studies using the MaxEnt have been carried out to model the geographical range of many types of organisms, especially vascular plants and bryophytes [38-41]. This method, however, has very rarely been used for predicting the ranges of macrofungi [34] and lichen-forming fungi [42-44]. However, obtained results indicate that this method can be a valuable tool supporting ecological and biogeographic research, as well as ordinary fieldwork concerning lichens. The interpretation of potential distribution models always requires particular caution. However, this method allows for estimating the size of species ranges and thus increases our knowledge on these ranges, as well as our understanding of the mechanisms affecting them. Distribution modeling also enables us to predict the risk of species extinction and is therefore a very valuable tool in the efforts to estimate and conserve the biological diversity of all organisms.
  • 3.Galloway DJ. Lichen biogeography. In: Nash III TH, editor. Lichen biology. 2nd ed. Cambridge: Cambridge University Press; 2008. p. 315-335. http://dx.doi.org/10.1017/CB09780511790478.017
  • 4.Blanco O, Crespo A, Ree RH, Lumbsch HT. Major clades of parmelioid lichens (Parmeliaceae, Ascomycota) and the evolution of their morphological and chemical diversity. Mol Phylogenet Evol. 2006;39:52-69. http://dx.doi.org/10.1016/j.ympev.2005.12.015
  • 5.de Paz GA, Cubas P, Crespo A, Elix JA, Lumbsch HT. Transoceanic dispersal and subsequent diversification on separate continents shaped diversity of the Xanthoparmelia pulla group (Ascomycota). PLoS ONE. 2012;7(6):e39683. http://dx.doi.org/10.1371/journal.pone.0039683
  • 6.Szczepańska K, Kossowska M. The lichen-forming fungi of the Xanthoparmelia pulla group (Parmeliaceae, Ascomycota) in Poland. Acta Soc Bot Pol. 2014;83:59-65. http://dx.doi.org/10.5586/asbp.2014.004
  • 7.Guisan A, Thuiller W. Predicting species distribution: offering more than simple habitat models. Ecol Lett. 2005;8:993-1009. http://dx.doi. org/10.1111/j.1461-0248.2005.00792.x
  • 8.Mbatudde M, Mwanjololo M, Kakudidi EK, Dalitz H. Modelling the potential distribution of endangered Prunus africana (Hook.f.) Kalkm. in East Africa. Afr J Ecol. 2012;50:393-403. http://dx.doi. org/10.1111/j.1365-2028.2012.01327.x
  • 9.Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol Model. 2006;190:231-259. http://dx.doi.org/10.1016/j.ecolmodel.2005.03.026
  • 10.Phillips SJ, Dudik M. Modeling of species distributions with Max-ent: new extensions and a comprehensive evaluation. Ecography. 2008;31:161-175. http://dx.doi.org/10.1111/j.0906-7590.2008.5203.x
  • 11.Parolo G, Rossi G, Ferrarini A. Toward improved species niche model Arnica montana in the Alps as a case study. J Appl Ecol. 2008;45:1410-1418. http://dx.doi.org/10.1111/j.1365-2664.2008.01516.x
  • 12.Elith J, Phillips SJ, Hastie T, Dudik M, Chee YE, Yates CJ. A statistical explanation of MaxEnt for ecologists. Divers Distrib. 2011;17:43-57. http://dx.doi.Org/10.1111/j.1472-4642.2010.00725.x
  • 13.Syfert MM, Smith MJ, Coomes DA. The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models. PLoS ONE. 2013;8(2):e55158. http://dx.doi. org/10.1371/journal.pone.0055158
  • 14.Orange A, James PW, White FJ. Microchemical methods for the identification of lichens. London: British Lichen Society; 2001.
  • 15.Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surface for global land areas. Int J Climatol. 2005;25:1965-2198. http://dx.doi.org/10.1002/joc.1276
  • 16.Warren DL, Glor RE, Turelli M. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography. 2010;33:607-611. http://dx.doi.org/10.1111/j.1600-0587.2009.06142.x
  • 17.Yang XQ Kushwaha SPS, Saran S, Xu J, Roy PS. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecol Eng. 2013;51:83-87. http://dx.doi.org/10.1016/j.ecoleng.2012.12.004
  • 18.Swets JA. Measuring the accuracy of diagnostic systems. Science. 1988;240:1285-1293. http://dx.doi.org/10.1126/science.3287615
  • 19.Manel S, Ceri Williams H, Ormerod SJ. Evaluating presence-absence models in ecology: the need to account for prevalence. J Appl Ecol. 2001;38:921-931. http://dx.doi.org/10.1046/j.1365-2664.2001.00647.x
  • 20.Galletti CS, Ridder E, Falconer SE, Fall PL. Maxent modeling of ancient and modern agricultural terraces in the Troodos foothills, Cyprus. Appl Geogr. 2013;39:46-56. http://dx.doi.org/10.1016/j. apgeog.2012.11.020
  • 21.Hawksworth DL, Blanco O, Divakar PK, Ahti T, Crespo A. A first checklist of parmelioid and similar lichens in Europe and some adjacent territories, adopting revised generic circumscriptions and with indications of species distributions. Lichenologist. 2008;40:1-21. http://dx.doi.org/10.1017/S0024282908007329
  • 22.Hawksworth DL, Divakar PK, Crespo A, Ahti T. The checklist of parmelioid and similar lichens in Europe and some adjacent territories: additions and corrections. Lichenologist. 2011;43:639-645. http:// dx.doi.org/10.1017/S0024282911000454
  • 23.Wirth V, Hauck M, Schultz M. Die Flechten Deutschlands. Stuttgart: Eugen Ulmer; 2013.
  • 24.Rizzi G, Giordani P. The ecology of the lichen genus Xanthoparmelia in Italy: an investigation throughout spatial scales. Plant Biosyst. 2013;147:33-39. http://dx.doi.org/10.1080/11263504.2012.717546
  • 25.Starkel L. Geografia Polski, środowisko przyrodnicze. Warszawa: Wydawnictwo Naukowe PWN; 1999.
  • 26.Coppins BJ, Seed L, Earland-Bennett PM. Neofuscelia luteonotata, new to the British Isles, and notes to the N. pulla group. Br Lichen Soc Bull. 2002;90:29-33.
  • 27.Motiejünaite J. Lapiškosios ir krumiškosios kerpés. Vilnius: Valstieči^ Laikraštis; 2002. [Lietuvos Grybai; vol 13(1)].
  • 28.Cieśliński S, Czyżewska K, Fabiszewski J. Red list of the lichens in Poland, In: Mirek Z, Zarzycki K, Wojewoda W, Szeląg Z, editors. Red list of plants and fungi in Poland. Kraków: W. Szafer Institute of Botany, Polish Academy of Sciences; 2006. p. 71-79.
  • 29.Green TGA, Nash III TH, Lange OL. Physiological ecology of carbon dioxide exchange. In: Nash III TH, editor. Lichen biology. 2nd ed. Cambridge: Cambridge University Press; 2008. p. 152-181. http:// dx.doi.org/10.1017/CBO9780511790478.010
  • 30.Nash III TH. Nitrogen, its metabolism and potential contribution to ecosystems. In: Nash III TH, editor. Lichen biology. 2nd ed. Cambridge: Cambridge University Press; 2008. p. 216-233. http://dx.doi. org/10.1017/CBO9780511790478.012
  • 31.Palmqvist K, Dahlman L, Jonsson A, Nash III TH. The carbon economy of lichens. In: Nash III TH, editor. Lichen biology. 2nd ed. Cambridge: Cambridge University Press; 2008. p. 182-215. http:// dx.doi.org/10.1017/CBO9780511790478.011
  • 32.Beckett RP, Kranner I, Minibayeva FV. Stress physiology and the symbiosis. In: Nash III TH, editor. Lichen biology. 2nd ed. Cambridge: Cambridge University Press; 2008. p. 134-151. http://dx.doi. org/10.1017/CBO9780511790478.009
  • 33.Newbold T. Applications and limitations of museum data for conservation and ecology, with particular attention to species distribution models. Prog Phys Geogr. 2010;34:3-22. http://dx.doi. org/10.1177/0309133309355630
  • 34.Wolan AK, Vegar Bakkestuen V, Kauserud H, Gulden G, Halvorsen R. Modelling and predicting fungal distribution patterns using herbarium data. J Biogeogr. 2008;35:2298-2310. http://dx.doi. org/10.1111/j.1365-2699.2008.01965.x
  • 35.Hernandez PA, Graham CH, Master LL, Albert DL. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography. 2006;29:773-785. http://dx.doi.org/10.1111/j.0906-7590.2006.04700.x
  • 36.Chatfield C. Model uncertainty, data mining and statistical inference J R Stat Soc Ser A Stat Soc. 1995;158:419-466. http://dx.doi. org/10.2307/2983440
  • 37.Loiselle BA, Jergensen PM, Consiglio T, Jiménez I, Blake JG, Lohmann LG, et al. Predicting species distributions from herbarium collections: does climate bias in collection sampling influence model outcomes? J Biogeogr. 2008;35:105-116.
  • 38.Sérgio C, Figueira R, Draper D, Menezes R, Sousa A.J. Modelling bryophyte distribution based on ecological information for extent of occurrence assessment. Biol Conserv. 2007;135:341-351. http:// dx.doi.org/10.1016/j.biocon.2006.10.018
  • 39.Kruijer HJD, Raes N, Stech M. Modelling the distribution of the moss species Hypopterygium tamarisci (Hypopterygiaceae, Bryophyta) in Central and South America. Nova Hedwigia. 2010;91:399-420. http:// dx.doi.org/10.1127/0029-5035/2010/0091-0399
  • 40.Delgadillo C, Villasenor JL, Ortiz E. The potential distribution of Grimmia (Grimmiaceae) in Mexico. Bryologist. 2012;115:12-22. http://dx.doi.org/10.1639/0007-2745-115.1.12
  • 41.Yu J, Ma YH, Guo SL. Modeling the geographic distribution of the epiphytic moss Macromitrium japonicum in China. Ann Bot Fenn. 2013;50:35-42. http://dx.doi.org/10.5735/085.050.0105
  • 42.Braidwood D, Ellis CJ. Bioclimatic equilibrium for lichen distributions on disjunct continental landmasses. Botany. 2012;90:1316-1325. http://dx.doi.org/10.1139/b2012-103
  • 43.Carlsen T, Bendiksby M, Hofton TH, Reiso S, Bakkestuen V, Haugan R, et al. Species delimitation, bioclimatic range, and conservation status of the threatened lichen Fuscopannaria confuse. Lichenologist. 2012;44:565-575. http://dx.doi.org/10.1017/S0024282912000199
  • 44.Ellis CJ, Eaton S, Thedoropoulos M, Coppins BJ, Seaward MRD, Sim-kin J. Lichen epiphyte scenarios - a toolkit of climate and woodland change for the 21st century. Edinburgh: Royal Botanic Garden and The British Lichen Society; 2014.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-151abb65-a714-41e9-926d-908080daf0e3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.