PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 26 | 1 |

Tytuł artykułu

Soil microbial activity as influenced by compaction and straw mulching

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Field study was performed on Haplic Luvisol soil to determine the effects of soil compaction and straw mulching on microbial parameters of soil under soybean. Treatments with different compaction were established on unmulched and mulched with straw soil. The effect of soil compaction and straw mulching on the total bacteria number and activities of dehydrogenases, protease, alkaline and acid phosphatases was studied. The results of study indicated the decrease of enzymes activities in strongly compacted soil and their increase in medium compacted soil as compared to no-compacted treatment. Mulch application caused stimulation of the bacteria total number and enzymatic activity in the soil under all compaction levels. Compaction and mulch effects were significant for all analyzed microbial parameters (P<0.001).

Wydawca

-

Rocznik

Tom

26

Numer

1

Opis fizyczny

p.65-69,fig.,ref.

Twórcy

autor
  • Institute of Agrophysics, Polish Academy of Sciences, Doswiadczalna 4, P.O.Box 201, 20-290 Lublin, Poland
autor

Bibliografia

  • Alef K., 1995. Dehydrogenase activity. In: Methods in Applied Soil Microbiology and Biochemistry (Eds K. Alef, P. Nannipieri). London, Academic Press, UK.
  • Alef K. and Nannipieri P., 1995. Protease activity. In: Methods in Applied Soil Microbiology and Biochemistry (Eds K. Alef, P. Nannipieri). London, Academic Press, UK.
  • Brzeziñska M., Stêpniewski W., Stêpniewska Z., Przywara G., and Włodarczyk T., 2001. Effect of oxygen deficiency on soil dehydrogenase activity in a pot experiment with triticale cv. Jago vegetation. Int. Agrophysics, 15, 145-149.
  • Buck C., Langmaack M., and Schrader S., 2000. Influence of mulch and soil compaction on earthworm cast properties. Appl. Soil Ecol., 14, 223-229.
  • Dick R.P., Myrold D.D., and Kerle E.A., 1988. Microbial biomass and soil enzyme activities in compacted and rehabilitated skid trail soils. Soil Sci. Soc. Am. J., 52, 512-516.
  • Entry J.A., Reeves D.W., Backman C.B., and Raper R.L., 1996. Influence of wheel traffic and tillage on microbial biomass, residue decomposition and extractable nutrients in a Coastal Plain Soil. Plant Soil, 180, 129-137.
  • Gajda A., 2010. Microbial activity and particulate organic matter content in soils with different tillage system use. Int. Agrophys., 24, 129-137.
  • Hamza M.A. and Anderson W.K., 2005. Soil compaction in cropping systems: A review of the nature, causes and possible solutions. Soil Till. Res., 82, 121-145.
  • Ikeda K., Toyota K., and Kimura M., 1997. Effects of soil compaction on the microbial populations of melon and maize rhizoplane. Plant Soil, 189, 91-96.
  • Jezierska-Tys S., Fr¹c M., and Tys J., 2010. Microbiological hazard resulting from application of dairy sewage sludge: effects on occurrence of pathogenic microorganisms in soil. J. Toxicol. Environ. Health, Part A, 73, 1194-1201.
  • Jordan D., Ponder Jr. F., and Hubbard V.C., 2003. Effects of soil compaction, forest leaf litter and nitrogen fertilizer on two oak species and microbial activity. Appl. Soil Ecol., 23, 33-41.
  • Karaca A., Baran A., and Kaktanir K., 2000. The effect of compaction on urease enzyme activity, carbon dioxide evaluation and nitrogen mineralization. Turkey J. Agric. For., 24, 437-441.
  • Kremer R.J. and Li J., 2003. Developing weed-suppressive soils through improved soil quality management. Soil Till. Res., 72, 193-202.
  • Ladd J.N. and Butler J.H.A., 1972. Short-termassay of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates. Soil Biol. Biochem., 4, 19-30.
  • Lee W.J., Wood C.W., Reeves D.W., Entry J.A., and Raper R.L., 1996. Interactive effects of wheel-traffic and tillage system on soil carbon and nitrogen. Soil Sci. Plant Anal., 27, 3027-3043.
  • Li Q., Allen H.L., and Wilson C.A., 2003. Nitrogen mineralization dynamics following the establishment of a loblolly pine plantation. Can. J. For. Res., 33, 364-374.
  • PupinB., Freddi O., and Nahas E., 2009. Microbial alterations of the soil influenced by induced compaction. Rev. Brasil. Ciê. Solo, 33, 1207-1213.
  • Riffaldi R., Saviozzi A., Levi-Minzi R., and Cardelli R., 2003. Conventional crop management effects on soil organic matter characteristics. Agronomie, 23, 45-50.
  • Shestak C.J. and Busse M.D., 2005. Compaction alters physical but not biological indices of soil health. Soil Sci. Soc. Am. J., 69, 236-246.
  • Siczek A. and Lipiec J., 2011. Soybean nodulation and nitrogen fixation in response to soil compaction and surface straw mulching. Soil Till. Res., 114, 50-56.
  • Smeltzer D.L.K., Bergdhal D.R., and Donnelly J.R., 1986. Forest ecosystem responses to artificially induced soil compaction. II. Selected soil microorganism populations. Can. J. For. Res., 16, 870-872.
  • Tabatabai M.A. and Bremner J.M., 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem., 1, 301-307.
  • Taylor J.P., Wilson B., Mills M.S., and Burns R.G., 2002. Comparison of microbial numbers and enzymatic activities in surface soils and subsoils various techniques. Soil Biol. Biochem., 34, 387-401.
  • Thalmann A., 1968. Zur Methodik der Bestimmung der Dehydrogenase – Aktivität im Boden mittels Triphenyltetrazoliumchlorid (TTC). Landwirtsh. Forsch., 21, 249-258.
  • Tu C., Ristaino J.B., andHuS., 2006. Soil microbial biomass and activity in organic tomato farming systems: Effects of organic inputs and straw mulching. Soil Biol. Biochem., 38, 247-255.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-14c7ded4-059e-4346-88c6-ecf84482df09
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.