PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 3 |

Tytuł artykułu

Influence of initial pH on anodic biofilm formation in single-chambered microbial electrolysis cells

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This study investigates the influence of initial pH on anodic biofilm formation of microbial electrolysis cells. Initial pH affects the activities of microorganisms in MEC, and furthermore will affect hydrogen (H₂) generation. Therefore, we explore the effects of initial pH on anodic biofilm formation of microbial electrolysis cells and the intrinsic reasons. In a single-chamber MEC, with different initial pH (which are 5.0, 6.0, 7.0, 8.0, and 9.0), the maximum power density during the enrichment process was 2.73 mA/cm² at pH 8.0, which is 56% and 23% higher than those working at pH 7.0 and 9.0, and get worse under acidic conditions. pH 8.0 also showed the highest coulombic efficiency of 46.4% compared with other experimental groups, and energy recovery efficiency is 17.5%. Membrane biomass, as an indicator for anode microbial biomass, decreased sharply at pH 5.0 and 6.0 compared with the neutral and alkaline. Scanning electron microscopy verifies that alkalescent conditions are beneficial to form more rod-shaped bacteria in MECs. These results show that electrochemical interactions between bacteria and electrodes in MECs are enhanced under neutral and alkaline conditions, and the optimal initial pH for anode bacteria formation of 8.0. The information provided below will be useful for improving MEC hydrogen generation.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

3

Opis fizyczny

p.1377-1384,fig.,ref.

Twórcy

autor
  • College of Energy and Environmental Sciences, Yunnan Normal University, Kunming, Yunnan, China
autor
  • College of Energy and Environmental Sciences, Yunnan Normal University, Kunming, Yunnan, China
autor
  • College of Energy and Environmental Sciences, Yunnan Normal University, Kunming, Yunnan, China
autor
  • College of Energy and Environmental Sciences, Yunnan Normal University, Kunming, Yunnan, China

Bibliografia

  • 1. PINTO R.P., TARTAKOVSKYA B., SRINIVASAN B. Optimizing energy productivity of microbial electrochemical cells. Journal of Process Control. 22, 1079, 2012.
  • 2. ROZENDAL R.A., HAMELERS H.V.M., MOLENKAMP R.J., BUISMAN C.J.N. Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes. Water research 41 (9), 1984, 2007.
  • 3. ROZENDAL R.A. Hydrogen production through biocatalyzed electrolysis. International Journal of Hydrogen Energy. 31, 1632, 2006.
  • 4. DING A.Q., YANG Y., SUN G.D., WU D. Impact of applied voltage on methane generation and microbial activities in an anaerobic microbial electrolysis cell (MEC). Chemical Engineering Journal. 283, 260, 2016.
  • 5. SASAKI K., MORITA M., SASAKI D., HIRANO S.I., MATSUMOTO N., WATANABE A., OHMURA N., IGARASHI Y. A bioelectrochemical reactor containing carbon fiber textiles enables efficient methane fermentation from garbage slurry. Bioresource Technology. 102, 6837, 2011.
  • 6. SLEUTELS T.H.J.A., DARUS L., HAMELERS H.V.M., BUISMAN C.J.N. Effect of operational parameters on Coulombic efficiency in bioelectrochemical systems. Bioresource Technology. 102, 11172, 2011.
  • 7. CHENG K.Y., HO G., CORD-RUWISCH R. Novel methanogenic rotatable bioelectrochemical system operated with polarity inversion. Environmental Science & Technology. 45, 796, 2011.
  • 8. CHAE K., CHOI M., KIM K., AJAYI F.F., CHANG I., KIM I. Selective inhibition of methanogens for the improvement of biohydrogen production in microbial electrolysis cells. International Journal of Hydrogen Energy. 35, 13379, 2010.
  • 9. CHENG S., XING D., CALL D.F., LOGAN B.E. Direct biological conversion of electrical current into methane by electromethanogenesis. Environmental Science & Technology. 43, 3953, 2009.
  • 10. VALLE A., ZANARDINI E., ABBRUSCATO P., ARGENZIO P., LUSTRATO G., RANALLI G., SORLINI C. Effects of low electric current (LEC) treatment on pure bacterial cultures. Journal of Applied Microbiology. 103, 1376, 2007.
  • 11. YUAN Y., ZHAO B., ZHOU S.G., ZHONG S.K., ZHUANG L. Electrocatalytic activity of anodic biofilm responses to pH changes in microbial fuel cells. Bioresource Technology. 102, 6887, 2011.
  • 12. LIU C., LIU W.Z., WANG A.J., ZHOU J.Z. Impact of low pH shock on anodic community structure and functional gene change in microbial electrolysis cells (MECs). Acta Scientiae Circumstantiae 35 (10), 3057, 2015.
  • 13. ZHUANG L., ZHOU S.G., LI Y.T., YUAN Y. Enhanced performance of air-cathode two-chamber microbial fuel cells with high-pH anode and low-pH cathode. Bioresource Technology. 101, 3514, 2010.
  • 14. CHEN S., LIU G., ZHANG R., QIN B., LUO Y. Development of the microbial electrolysis desalination and chemical-production cell for desalination as well as acid and alkali productions. Environmental Science & Technology. 46 (4), 2467, 2012.
  • 15. QU Y., FENG Y., WANG X., LIU J., LV J., HE W., LOGAN B.E. Simultaneous water desalination and electricity generation in a microbial desalination cell with electrolyte recirculation for pH control. Bioresource Technology. 106, 89, 2012.
  • 16. JEREMIASSE A.W., HAMELERS H.V.M., BUISMAN C.J.N. Microbial electrolysis cell with a microbial biocathode. Bioelectrochemistry. 78 (1), 39, 2010.
  • 17. KATURI K.P., KAVANAGH P., RENGARAJ S., LEECH D. Geobacter sulfurreducens biofilms developed under different growth conditions on glassy carbon electrodes: insights using cyclic voltammetry. Chemical Communications. 46, 4758, 2010.
  • 18. BUSALMEN J.P., ESTEVENUÑEZ A., FELIU J.M. Whole cell electrochemistry ofelectricity-producing microorganisms evidence an adaptation for optimal exocellular electron transport. Environmental Science & Technology. 42 (7), 2445, 2008.
  • 19. HU H., FAN Y., LIU H. Hydrogen production using single-chamber membrane-free microbial electrolysis cells. Water Research. 42 (15), 4172, 2008.
  • 20. BARD A.J., FAULKNER L.R., Electrochemical Methods: Fundamentals and Applications. New York: Wiley, 1364, 2001.
  • 21. YUAN Y., ZHOU S., XU N., ZHUANG L. Electrochemical characterization of anodic biofilms enriched with glucose and acetate in single-chamber microbial fuel cells. Colloids & Surfaces B Biointerfaces. 82 (2), 641, 2011.
  • 22. LIU Y., HARNISCH F., FRICKE K., SIETMANN R., SCHRÖDER U. Improvement of the anodic bioelectrocatalytic activity of mixed culture biofilms by a simple consecutive electrochemical selection procedure. Biosensors & Bioelectronics. 24, 1006, 2008.
  • 23. YANG N., HAFEZ H., NAKHLA G. Impact of volatile fatty acids on microbial electrolysis cell performance. Bioresource Technology 193, 449, 2015.
  • 24. JIANG S., PARK S., YOON Y., LEE J.H., WU W.M., PHUOC DAN N., SADOWSKY M.J., HUR H.G. Methanogenesis facilitated by geobiochemical iron cycle in a novel syntrophic methanogenic microbial community. Environmental Science and Technology. 47 (17), 10078, 2013.
  • 25. KATO S., HASHIMOTO K., WATANABE K. Methanogenesis facilitated by electric syntrophy via (semi) conductive iron-oxide minerals. Environmental Microbiology. 14 (7), 1646, 2012.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-14338d0e-360a-498e-924a-a324598726d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.