PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 71 | 2 |
Tytuł artykułu

Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The pathophysiology of acute spinal cord injury (SCI) involves primary and secondary mechanisms of injury. Though both mechanisms are involved in the neurological dysfunction in SCI most research however has focused on understanding the pathophysiology of the secondary damage and reducing the amount of delayed cell loss following SCI. Research has revealed extensive therapeutic windows in secondary injury mechanisms that could be manipulated by appropriate exogenous interventions. In contrast, primary injury to the cord happens unexpectedly, and it is associated with inevitable delays; ranging from several hours to days before specialized care is administered. Therefore, apart from achieving patient's stabilization, the therapeutic window in the primary phase of injury is essentially obliterated, and consequently inaccessible for specialized intervention. Coupled to this, the exacerbating effect of secondary injury mechanisms has generally commenced before the specialist intervention. Hence, knowledge of secondary injury mechanisms and their intricacies are invaluable requisite for any tailored therapeutic strategy in the persistent search for a cure of SCI. There are about 25 well- established secondary injury mechanisms in SCI, and are found in bits or clusters in literature. A vast number of these articles are not open access. Besides, articles with a comprehensive catalog of these mechanisms are not readily available. This article has cataloged over twenty five identified secondary mechanisms of injury in the spinal cord in an open access portal, and is particularly versatile for starters in spinal cord injury research.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
71
Numer
2
Opis fizyczny
p.281-299,ref.
Twórcy
autor
  • Department of Human Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Niger Delta University, Wilberforce Island, Bayelsa State, Nigeria
Bibliografia
  • Ali H, Bahbahani H (2010) Umbilical cord blood stem cells - potential therapeutic tool for neural injuries and disor­der. Acta Neurobiol Exp (Wars) 70: 316-324.
  • Ali H, Jurga M, Kurgonaite K, Forraz N, McGuckin C (2009) Defined serum-free culturing conditions for neural tissue engineering of human cord blood stem cells. Acta Neurobiol Exp (Wars) 69: 12-23.
  • Allan SM, Rothwell NJ (2003) Inflammation in central ner­vous system injury. Philos Trans R Soc Lond B Biol Sci 358: 1669-1677.
  • Amemiya S, Kamiya T, Nito C, Inaba T, Kato K, Ueda M, Shimazaki K, Katayama Y (2005) Anti-apoptotic and neuroprotective effects of edaravone following transient focal ischemia in rats. Eur J Pharmacol 516: 125-130.
  • Anderson AJ (2002) Mechanisms and pathways of inflam­matory responses in CNS trauma: Spinal cord injury. J Spinal Cord Med 25: 70-79.
  • Azbill RD, Mu X, Bruce-Keller AJ, Mattson MP, Springer JE (1997) Impaired mitochondrial function, oxidative stress and altered antioxidant enzyme activities follow­ing traumatic spinal cord injury. Brain Res 765: 283­290.
  • Balentine JD (1978) Pathology of experimental spinal cord trauma. I. The necrotic lesion as a function of vascular injury. Lab Invest 39: 236-253.
  • Bao F, Dekaban GA, Weaver LC (2005) Anti-CD11d anti­body treatment reduces free radical formation and cell death in the injured spinal cord of rats. J Neurochem 94: 1361-1373.
  • Baptiste DC, Fehlings MG (2006) Pharmacological approaches to repair the injured spinal cord. J Neurotrauma 23: 318-334.
  • Baptiste DC, Fehlings MG (2007) Update on the treatment of spinal cord injury. Prog Brain Res 161: 217-233.
  • Barbee K A (2005) Mechanical cell injury. Ann NY Acad Sci 1066: 67-84.
  • Bareyre FM, Schwab ME (2003) Inflammation, degenera­tion and regeneration in the injured spinal cord: Insights from DNA microarrays. Trends in Neurosci 26: 555­563.
  • Bartkowska K, Turlejski K, Djavadian RL (2010) Neurotrophins and their receptors in early development of the mammalian nervous system. Acta Neurobiol Exp (Wars) 70: 454-467.
  • Beattie MS, Farooqui AA, Bresnahan JC (2000) Review of current evidence for apoptosis after spinal cord injury. J Neurotrauma 17: 915-925.
  • Beirowski B, Adalbert R, Wagner D, Grumme DS, Addicks K, Ribchester RR, Michael P Coleman MP (2005) The progressive nature of Wallerian degeneration in wild-type and slow Wallerian degeneration (WldS) nerves. BMC Neurosci 6: 6.
  • Benton RL, Maddie MA, Minnillo DR, Hagg T, Whittemore SR (2008) Griffonia simplicifolia isolectin B4 identifies a specific subpopulation of angiogenic blood vessels fol­lowing Contusive spinal cord Injury in the adult mouse. J Comp Neurol 507: 1031-1052.
  • Blesch A, Tuszynski HM (2008) Spinal cord injury: plastic­ity, regeneration and the challenge of translational drug development. Trends in Neurosci 32: 41-47.
  • Blight AR (1994) Effects of silica on the outcome from experimental spinal cord injury: implication of mac­rophages in secondary tissue damage. Neurosci 60: 263­273.
  • Bunge RP, Puckett WR, Becerra JL, Marcillo AE and Quencer RM (1993) Observations on the pathology of human spinal cord injury. A review and classification of 22 new cases with details from a case of chronic cord compression with extensive focal demyelination. Adv Neurol 59: 75-89.
  • Buss A, Pech K, Kakulas AB, Martin D, Schoenen J, Noth J, and Brook AG (2009) NG2 and phosphacan are present in the astroglial scar after human traumatic spinal cord injury BMC Neurol 9: 32.
  • Buzanska L, Ruiz A, Zychowicz M, Rauscher H, Ceriotti L, Rossi F, Colpo P, Domaska-Janik K, Coecke S (2009) Patterned growth and differentiation of human cord blood derived neural stem cells on bio-functionalized surfaces. Acta Neurobiol Exp (Wars) 69: 24-36.
  • Callegari DC, Posso IP, Galupo MTG, Wroclawski ER (2008) Acute ketoprofen neurotoxicity in spinal cord of rats. einstein 6: 82-85.
  • Campagnolo DI, Bartlett JA, Keller SE (2000) Influence of neurological level on immune function following spinal cord injury: a review. J Spinal Cord Med 23:121-128.
  • Can M, Gul S, Bektas S, Hanci V, Acikgoz S (2009) Effects of dexmedetomidine or methylprednisolone on inflam­matory responses in spinal cord injury. Acta Anaesthesiologica Scandinavica 53: 1068-1072.
  • Casha S, Yu WR, Fehlings MG (2001) Oligodendroglial apoptosis occurs along degenerating axons and is associ­ated with FAS and p75 expression following spinal cord injury in the rat. Neurosci 103: 203-218.
  • Chen J, Bernreuther C, Dihne M, Schachner M (2005) Cell adhesion molecule L1-transfected embryonic stemcells with enhanced survival support regrowth of corticospinal tract axons in mice after spinal cord injury. J Neurotrauma 22: 896-906.
  • Chi LY, Yu J, Zhu H, Li X, Zhu S, Li Z, Pettigrew LC, Grass D, Hickman JJ, Kindy MS (2010)Dual neuronal response to tumor necrosis factor-alpha following spinal cord injury. Neural Regeneration Res 5: 917-926.
  • Choo AM, Liu J, Lam CK, Dvorak M, Tetzlaff W, Oxland TR (2007) Contusion, dislocation, and distraction: pri­mary hemorrhage and membrane permeability in distinct mechanisms of spinal cord injury. J Neurosurg Spine 6: 255-266.
  • Cuzzocrea S, Riley DP, Caputi AP, Salvemini D (2001) Antioxidant therapy: a new pharmacological approach in shock, inflammation, and ischemia / reperfusion injury. Pharmacol Rev 53:135-159.
  • Declercq W, Denecker G, Fiers W, Vandenabeele P (1998) Cooperation of both TNF receptors in inducing apoptosis: involvement of the TNF receptor-associated factor binding domain of the TNF receptor 75. J Immunol 161: 390-399.
  • Ditor DS, Bao F, Chen Y, Dekaban GA, Weaver LC (2006) A therapeutic time window for anti-CD 11d monoclonal antibody treatment yielding reduced secondary tissue damage and enhanced behavioral recovery following severe spinal cord injury. J Neurosurg Spine 5: 343-352.
  • Ducker TB, Kindt GW, Kempe LG (1971) Pathological find­ings in acute experimental spinal cord trauma. J Neurosurg 35: 700-707.
  • Dumont RJ, Okonkwo DO, Verma S, Hurlbert RJ, Boulos PT, Ellegala DB and Dumont AS (2001) Acute spinal cord injury, part I: pathophysiologic mechanisms. Clin Neuropharmacol 24: 254-264.
  • Errando C, Sifre C, Moliner S, Valia JC, Gimeno O, Minguez P (1999) Subarachnoid ketamine in swine pathological findings after repetead doses:acute toxicity study. Reg Anesth Pain Med 24: 146-152.
  • Faden AI, Jacobs TP, Mougey E, Holaday JW (1981) Endorphins in experimental spinal injury: Therapeutic effect of naloxone. Ann Neurol 10: 326-332.
  • Farkas O and Povlishock JT (2007) Cellular and subcellular change evoked by diffuse traumatic brain injury: a com­plex web of change extending far beyond focal damage. Prog Brain Res 161: 43-59.
  • Farkas O, Lifshitz J, Povlishock JT (2006) Mechanoporation induced by diffuse traumatic brain injury: an irreversible or reversible response to injury? J Neurosci 26: 3130-3140.
  • Fawcett JW, Asher RA (1999) The glial scar and central nervous system repair. Brain Res Bull 49: 377-391.
  • Fehlings MG, Baptiste DC (2005) Current status of clinical trials for acute spinal cord injury. Injury 36: B113-B122.
  • Fehlings MG, Nguyen DH (2010) Immunoglobulin G: a potential treatment to attenuate neuroinflammation fol­lowing spinal cord injury. J Clin Immunol 1: S109-S112.
  • Fehlings MG, Tator CH, Linden RD (1989) The effect of nimodipine and dextran on axonal function and blood flow following experimental spinal cord injury. J Neurosurg 71:403-416.
  • Figiel I (2008) Pro-inflammatory cytokine TNF-a as a neu­roprotective agent in the brain. Acta Neurobiol Exp (Wars) 68: 526-534.
  • Fitch MT, Doller C, Combs CK Landreth GE, Silver J (1999) Cellular and molecular mechanisms of glial scar­ring and progressive cavitation: in vivo and in vitro analy­sis of inflammation-induced secondary injury after cns trauma. J Neurosci 19: 8182-8198
  • Fontaine V, Mohand-Said S, Hanoteau N, Fuchs C, Pfizenmaier K, Eisel U (2002) Neurodegenerative and neuroprotective effects of tumor Necrosis factor (TNF) in retinal ischemia: opposite roles of TNF receptor 1 and TNF receptor 2. J Neurosci 22: RC216.
  • Fouad K, Klusman I, Schwab ME (2004) Regenerating cor- ticospinal fibers in the Marmoset (Callitrix jacchus) after spinal cord lesion and treatment with the anti- Nogo-A antibody IN-1. Eur J Neurosci 20: 2479-2482.
  • Genovese T, Mazzon E, Di Paola R, Cannavo G, Muia C, Bramanti P, Cuzzocrea S (2005a) Role of endogenous ligands for the peroxisome proliferators activated recep­tors alpha in the secondary damage in experimental spinal cord trauma. Exp Neurol 194: 267-278.
  • Genovese T, Mazzon E, Muia C, Patel NS, Threadgill MD, Bramanti P, De Sarro A, Thiemermann C, Cuzzocrea S (2005b) Inhibitors of poly(ADP-ribose) polymerase mod­ulate signal transduction pathways and secondary damage in experimental spinal cord trauma. J Pharmacol Exp Ther 312: 449-457.
  • Golding JD, Rigley MacDonald ST, Juurlink BH, Rosser BW (2006) The effect of glutamine on locomotor perfor­mance and skeletal muscle myosins following spinal cord injury in rats. J Appl Physiol 101: 1045-1052.
  • Gondim FA, Lopes CA, Oliveira GR, Rodrigues CL, Leal PR, Santos AA, Rola FH (2004) Cardiovascular control after spinal cord injury. Current Vascular Pharmacol 2: 1-9.
  • Grill R, Murai K, Blesch A, Gage F, and Tuszynski MH (1997) Cellular Delivery of Neurotrophin-3 Promotes Corticospinal Axonal Growth and Partial Functional Recovery after Spinal Cord Injury. J Neurosci 17: 5560­5572.
  • Gris D, Marsh DR, Oatway MA, Chen Y, Hamilton EF, Dekaban GA, Weaver LC (2004) Transient blockade of the CD11d/CD18 integrin reduces secondary damage after spinal cord injury, improving sensory, autonomic, and motor function. J Neurosci 24: 4043-4051.
  • Grossman SD, Rosenberg LJ, Wrathall JR (2001) Temporal- spatial pattern of acute neuronal and glial loss after spinal cord contusion. Exp Neurol 168: 273-282.
  • Guest JD, Hiester ED, Bunge RP (2005) Demyelination and Schwann cell responses adjacent to injury epicenter cavi­ties following chronic human spinal cord injury. Exp Neurol 192: 384-393.
  • Guha A, Tator CH (1988) Acute cardiovascular effects of experimental spinal cord injury. J Trauma 28: 481-490.
  • Guix FX, Uribesalgo I, Coma M, Munoz FJ (2005)The physiology and pathophysiology of nitric oxide in the brain. Progress in Neurobiol 76: 126-152.
  • Guly HR, Bouamra O, Lecky FE (2008) The incidence of neurogenic shock in patients with isolated spinal cord injury in the emergency department. Resuscitation 76: 57-62.
  • Guyton AC, Hall JE (2006) Dietary balances, regulation of feeding, obesity and starvation, vitamins and minerals. In: Textbook of Medical Physiology (Guyton A.C, Hall J.E., eds). Elsevier Saunders Inc. Philadelphia,PN. p. 876.
  • Hains BC, Black JA, Waxman SG (2003a) Primary cortical motor neurons undergo apoptosis after axotomizing spi­nal cord injury. J Comp Neurol 462: 328-341.
  • Hains BC, Saab CY, Lo AC, Waxman SG (2004) Sodium channel blockade with phenytoin protects spinal cord axons, enhances axonal conduction, and improves func­tional motor recovery after contusion SCI. Exp Neurol 188: 365-377.
  • Hall ED and Traystman RJ (2009) Role of Animal Studies in the Design of Clinical Trials. Front Neurol Neurosci 25: 10-33.
  • Hall ED, Braughler JM (1982) Glucocorticoid mechanisms in acute spinal cord injury: a review and therapeutic ratio­nale. Surg Neurol 18: 320-327.
  • Hall ED, Springer JE (2004) Neuroprotection and acute spi­nal cord injury: a reappraisal. NeuroRx 1: 80-100.
  • Hammarberg H, Lidman O, Lundberg C, Eltayeb SY, Gielen AW, Muhallab S, Svenningsson A, Linda H, van Der Meide PH, Cullheim S, Olsson T, Piehl F (2000) Neuroprotection by encephalomyelitis: rescue of mechanically injured neu­rons and neurotrophin production by CNS-infiltrating T and natural killer cells. J Neurosci 20: 5283-5291.
  • Happel RD, Smith KP, Banik NL, Powers JM, Hogan EL, Balentine JD (1981) Ca2+ accumulation in experimental spinal cord trauma. Brain Res 211: 476-479.
  • Hendrix S, Nitsch R (2007) The role of T helper cells in neuroprotection and regeneration. J Neuroimmunol 184: 100-112.
  • Herrmann EJ, Imura T, Song B, Qi J, Ao Y, Nguyen KT, Korsak AR, Takeda K, Akira S, Sofroniew VM (2008) STAT3 is a critical regulator of astrogliosis and scar for­mation after spinal cord injury. J Neurosci 9: 7231-7243.
  • Hiersemenzel LP, Curt A, Dietz V (2000) From spinal shock to spasticity: neuronal adaptations to a spinal cord injury. Neurology 54: 1574-1582.
  • Hirbec H, Gaviria M, Vignon J (2001) Gacyclidine: A new neuroprotective agent acting at the N-methyl-D-aspartate receptor. CNS Drug Rev 7: 172-198.
  • Hulsebosch CE (2002) Recent advances in pathophysiology and treatment of spinal cord injury. Adv Physiol Edu 26: 238-255.
  • Hurtado O, Lizasoain I, Fernandez-Tome P, Alvarez- Barrientos A, Leza JC, Lorenzo P, Moro MA (2002) TACE/ADAM17-TNF-alpha pathway in rat cortical cul­tures after exposure to oxygen-glucose deprivation or glutamate. J Cereb Blood Flow Metab 22: 576-585.
  • Imaizumi T, Kocsis JD, Waxman SG (1997) Anoxic injury in the rat spinal cord: Pharmacological evidence for mul­tiple steps in Ca2+ dependent injury of the dorsal columns. J Neurotrauma 14: 299-311.
  • Jablonska A, Kozlowska H, Markiewicz I, Domanska-Janik K, Lukomska B (2010) Transplantation of neural stem cells derived from human cord blood to the brain of adult and neonatal rats. Acta Neurobiol Exp (Wars) 70: 337­350.
  • Kao CC, Chang LW, Bloodworth JJ (1977) Axonal regen­eration across transected mammalian spinal cords: an electron microscopic study of delayed microsurgical nerve grafting. Exp Neurol 54: 591-615.
  • Kaptanoglu E, Solaroglu I, Surucu HS, Akbiyik F, Beskonakli E( 2005) Blockade of sodium channels by phenytoin pro­tects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury. Acta Neurochir (Wien) 147: 405-412.
  • Karimi-Abdolrezaee S, Eftekharpour E, Wang J, Morshead CM, Fehlings MG (2006) Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. J Neurosci 26: 3377-3389.
  • Kaymaz M, Emmez H, Bukan N, Dursun A, Kurt G, Pasaoglu H, Pasaoglu A (2005) Effectiveness of FK506 on lipid peroxidation in the spinal cord following experi­mental traumatic injury. Spinal Cord 43: 22-26.
  • Kikukawa S, Kawaguchi S, Mizoguchi A, Ide C, Koshinaga M (1998) Regeneration of dorsal column axons after spi­nal cord injury in young rats. Neurosci Letters 249: 135-138.
  • Kipnis J, Mizrahi T, Hauben E, Shaked I, Shevach E, Schwartz M (2002) Neuroprotective autoimmunity: Naturally occurring CD4+CD25+ regulatory T cells sup­press the ability to withstand injury to the central nervous system. PNAS 99: 15620-15625.
  • Kiss ZHT, Tator CH (1993) Neurogenic shock. In: Shock and resuscitation (Geller E.R., ed). McGraw-Hill. New York, NY. pp. 421-440.
  • Klapka N, Hermanns S, Straten G, Masanneck C, Duis S, Hamers FP, Muller D, Zuschratter W, Muller HW (2005) Suppression of fibrous scarring in spinal cord injury of rat promotes long-distance regeneration of corticospinal tract axons, rescue of primary motoneurons in somatosensory cortex and significant functional recovery. Eur J Neurosci 22: 3047-3058.
  • Klebanoff SJ, Vadas MA, Harlan JM (1986) Stimulation of neutrophils by tumor necrosis factor. J Immunol 136: 4220-4225.
  • Kloos AD, Fisher LC, Detloff MR, Hassenzahl DL, Basso DM (2005). Stepwise motor and all-or-none sensory recov­ery is associated with nonlinear sparing after incremental spinal cord injury in rats. Exp Neurol 191: 251-265.
  • Koda M, Okada S, Nakayama T, Koshizuka S, Kamada T, Nishio Y, Someya Y, Yoshinaga K, Okawa A, Moriya H, Yamazaki M (2005) Hematopoietic stem cell and marrow stromal cell for spinal cord injury in mice. Neuroreport 16:1763-1767.
  • Krassioukov A, Claydon VE (2006) The clinical problems in cardiovascular control following spinal cord injury: An overview. Prog Brain Res 152: 223-229.
  • Kreutzberg GW (1996) Principles of neuronal regeneration. Acta Neurochir Suppl 66:103-106.
  • Kwon BK, Tetzlaff W, Grauer JN, Beiner J, Vaccaro AR (2004) Pathophysiology and pharmacologic treatment of acute spinal cord injury Spine J 4: 451-464.
  • LaPlaca MC, Simon CM, Prado GR, and Cullen DK (2007) CNS injury biomechanics and experimental models. Prog Brain Res 161: 13-26.
  • Laverty PH, Leskovar A, Breur GJ, Coates JR, Bergman RL, Widmer WR, Toombs JP, Shapiro S, Borgens RB (2004) A preliminary study of intravenous surfactants in paraple­gic dogs: Polymer therapy in canine clinical SCI. J Neurotrauma 21: 1767-1777.
  • Lea PM, Faden AI (2003) Modulation of metabotropic glu­tamate receptors as potential treatment for acute and chronic neurodegenerative disorders. Drug News and Perspectives 16: 513-522.
  • Lee SM, Yune TY, Kim SJ, Park DOW, Lee YK, Kim YC, Oh YJ, Markelonis GJ, Oh TH (2003) Minocycline reduces cell death and improves functional recovery after traumatic spinal cord injury in the rat. J Neurotrauma 20: 1017-1027.
  • Levi AD, Dancausse H, Li X, Duncan S, Horkey L, Oliviera M (2002). Peripheral nerve grafts promoting central ner­vous system regeneration after spinal cord injury in the primate. J Neurosurg 96: 197-205.
  • Lewen A, Matz P, Chan PH (2000) Free radical pathways in CNS injury. J Neurotrauma 17: 871-890.
  • Li Y, Decherchi P, Raisman G (2003) Transplantation of olfactory ensheathing cells into spinal cord lesions restores breathing and climbing. J Neurosci 23: 727-731.
  • Lindholm D, Castren E, Kiefer R, Zafra F, Thoenen H (1992) Transforming growth factorbeta 1 in the rat brain: Increase after injury and inhibition of astrocyte prolifera­tion. J Cell Biol 117: 395-400.
  • Liu XZ, Xu XM, Hu R, Du C, Zhang SX, McDonald JW, Dong HX, Wu YJ, Fan GS, Jacquin MF, Hsu CY, Choi DW (1997) Neuronal and glial apoptosis after traumatic spinal cord injury. J Neurosci 17: 5395-5406.
  • Liu-Snyder P, Logan MP, Shi R, Smith DT, Borgens RB (2007) Neuroprotection from secondary injury by poly­ethylene glycol requires its internalization. J Exp Biol 210: 1455-1462.
  • Liverman TC, Altevogt MB, Joy EJ, Johnson TR (2005) Spinal cord injury: progress, promise, and priorities. National Academy of Sciences. N.W. Washington, DC.
  • Lucin K, Sanders V, Jones T, Popovich P (2007) Impaired antibody synthesis after spinal cord injury is level-depen­dent and is due to sympathetic nervous system dysregula- tion. Exp Neurol 207: 75-84.
  • Luo J, Borgens R, Shi R (2002) Polyethylene glycol imme­diately repairs neuronal membranes and inhibits free radical production after acute spinal cord injury. J Neurochem 83: 471-480.
  • Maier IC and Schwab ME (2006) Sprouting, regeneration and circuit formation in the injured spinal cord: factors and activity. Philos Trans R Soc Lond B Biol Sci 361: 1611-1634.
  • McAdoo DJ, Xu GY, Robak G, Hughes MG (1999) Changes in amino acid concentrations over time and space around an impact injury and their diffusion through the rat spinal cord. Exp Neurol 159: 538-544.
  • McTigue DM (2008) Potential therapeutic targets for ppary after spinal cord injury. PPAR Res 517162.
  • Mulligan MS, Varani J, Dame MK, Lane CL, Smith CW, Anderson DC, Ward PA (1991) Role of endothelial-leuko- cyte adhesion molecule 1 (ELAM-1) in neutrophil-medi- ated lung injury in rats. J Clin Invest 88: 1396-1406.
  • Nagel S, Su Y, Horstmann S, Heiland S, Gardner H, Koziol J, Martinez-Torres FJ, Wagner S (2008) Minocycline and hypothermia for reperfusion injury after focal cerebral ischemia in the rat - effects on BBB breakdown and MMP expression in the acute and subacute phase. Brain Res 1188: 198-206.
  • Nehrt A, Rodgers R, Shapiro S, Borgens R, Shi R (2007) The critical role of voltage-dependent calcium channel in axonal repair following mechanical trauma. Neurosci 146: 1504-1512.
  • Nemecek S (1978) Morphological evidence of microcircula- tory disturbances in experimental spinal cord trauma. Adv Neurol 20: 395-405.
  • Pan W, Zhang L, Liao J, Csernus B, Kastin JA (2003) Selective increase in TNFa permeation across the blood-spinal cord barrier after SCI. J neuroimmunol 134: 111-117.
  • Papastefanaki F, Chen J, Lavdas AA, Thomaidou D, Schachner M, and Matsas R (2007) Grafts of Schwann cells engi­neered to express PSA-NCAM promote functional recov­ery after spinal cord injury. Brain 130: 2159-2174.
  • Paterniti I, Genovese T, Crisafulli C, Mazzon E, Di Paola R, Galuppo M, Bramanti P, Cuzzocrea S (2009) Treatment with green tea extract attenuates secondary inflammatory response in an experimental model of spinal cord trauma. Naunyn-Schmied Arch Pharmacol 380: 179-192.
  • Peng W , Cotrina LM, Han X, Yu H, Bekar L, Blum L, Takano T, Guo-Feng Tian FG, GoldmanAS, and Nedergaard M (2009) Systemic administration of an antagonist of the ATP-sensitive receptor P2X7 improves recovery after spi­nal cord injury. PNAS 106: 12489-12493.
  • Piepmeyer JM, Lehmann KB, Lane JG (1985) Cardiovascular instability following acute cervical spine trauma. Cent Nerv Syst Trauma 2: 153-159.
  • Popovich PG, Guan Z, Wei P, Huitinga I, van RN, Stokes BT (1999) Depletion of hematogenous macrophages pro­motes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. Exp Neurol 158: 351-365.
  • Popovich PG, Jones TB (2003) Manipulating neuroinflam- matory reactions in the injured spinal cord: Back to basics. Trends Pharmaco Sci 24: 13-17.
  • Pradillo JM, Romera C, Hurtado O, Cardenas A, Moro MA, Leza JC, Davalos A, Castillo J, Lorenzo P, Lizasoain I (2005) TNFR1 upregulation mediates tolerance after brain ischemic preconditioning. J Cereb Blood Flow Metab 25: 193-203.
  • Profyris C, Cheema S, Zang D, Azari M, Boyle K, Petratos S (2004) Degenerative and regenerative mechanisms governing spinal cord injury. Neurobiol Dis 15: 415­436.
  • Quintana A, Giralt M, Rojas S, Penkowa M, Campbell IL, Hidalgo J, Molinero A (2005) Differential role of tumor necrosis factor receptors in mouse brain inflammatory responses in cryolesion brain injury. J Neurosci Res 82: 701-716.
  • Ramer LM, Ramer MS, Steeves JD (2005) Setting the stage for functional repair of spinal cord injuries: A cast of thousands. Spinal Cord 43: 134-161.
  • Rapalino O, Lazarov-Spiegler O, Agranov E, Velan GJ, Fraidakis M, Yoles E, Solomon A, Gepstein R, Katz A, Belkin M, Hadani M, Schwartz M (1998) Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat Med 4: 814-821.
  • Ray SK, Dixon CE, and Banik NL (2002) Molecular mecha­nisms in the pathogenesis of traumatic brain inury. Histol Histopathol 17: 1137-1152.
  • Ray SK, Hogan EL, Banik NL (2003) Calpain in the pathophysiology of spinal cord injury: Neuroprotection with calpain inhibitors. Brain Res Rev 42: 169-185.
  • Rossignol S, Schwab M, Schwartz M, Fehlings G (2007) Spinal Cord Injury: Time to Move? J Neurosci 27: 11782-11792.
  • Schnell L, Fearn S, Klassen H, Schwab ME, Perry VH (1999) Acute inflammatory responses to mechanical lesions in the CNS: Differences between brain and spinal cord. Eur J Neurosci 11: 3648-3658.
  • Schultke E, Kendall E, Kamencic H, Ghong Z, Griebel RW, Juurlink BH (2003) Quercetin promotes functional recov­ery following acute spinal cord injury. J Neurotrauma 20: 583-591.
  • Schwartz M, Butovsky O, Bruck W, Hanisch UK (2006) Microglial phenotype: is the commitment reversible? Trends Neurosci 29: 68 -74.
  • Schwartz M, Kipnis J (2001) Protective autoimmunity: reg­ulation and prospects for vaccination after brain and spi­nal cord injuries. Trends in Molecular Med 7: 252-258.
  • Schwartz M, Yoles E (2006) Immune-based therapy for spi­nal cord repair: autologous macrophages and beyond. J Neurotrauma 23: 360-370.
  • Sekhon HS and Fehlings MG (2001) Epidemiology, demo­graphics, and pathophysiology of acute spinal cord injury. Spine 26: S2-S12.
  • Senter HJ, Venes JL (1978) Altered blood flow and second­ary injury in experimental spinal cord trauma. J Neurosurg 49: 569-578.
  • Shan L, Ma S, QiuX, ZhouY, Zhang Y, Zheng L, Ren P, Wang Y, Fan Q, Ma B (2010) Hydroxysafflor Yellow A protects spinal cords from ischemia/reperfusion injury in rabbits. BMC Neurosci 11: 98.
  • Shi R, Asano T, Vining NC, Blight AR (2000) Control of membrane sealing in injured mammalian spinal cord axons. J Neurophysiol 84: 1763-1769.
  • Shimada K, Tokioka T (1995) Sequential MRI studies in patients with cervical cord injury but without bony injury. Paraplegia 33: 573-578.
  • Siegenthaler MM, Tu MK, Keirstead HS (2007) The extent of myelin pathology differs following contusion and transection spinal cord injury. J Neurotrauma 24: 1631­1646.
  • Simon MC, Sharif S, Tan PR, and LaPlaca CM (2009) Spinal Cord Contusion Causes Acute Plasma Membrane Damage. J Neurotrauma 26: 563-574.
  • Stagi M, Dittrich PS, Frank N, Iliev AI, Schwille P, Neumann H (2005) Breakdown of axonal synaptic vesicle precursor transport by microglial nitric oxide. J Neurosci 25: 352­362.
  • Stys PK, Waxman SG, Ransom BR (1992b) Ionic mecha­nisms of anoxic injury in mammalian CNS white matter: Role of Na+ channels and Na+ / Ca2+ exchanger. J Neurosci 12: 430-439.
  • Sullivan PG, Krishnamurthy S, Patel SP, Pandya JD, Rabchevsky AG (2007) Temporal characterization of mitochondrial bioenergetics after spinal cord injury. J Neurotrauma 24: 991-999.
  • Sypecka J, Dragun-Szymczak P, Zalewska T, Domańska- Janik K (2009) Laminin promotes oligogliogenesis and increases MMPs activity in human neural stem cells of HUCB-NSC line. Acta Neurobiol Exp (Wars) 69: 37-45.
  • Szymczak P, Wojcik-Stanaszek L, Sypecka J, Sokołowska A, Zalewska T (2010) Effect of matrix metalloproteinases inhibition on the proliferation and differentiation of HUCB-NSCs cultured in the presence of adhesive sub­strates. Acta Neurobiol Exp (Wars) 70: 325-336.
  • Tanhoffer AR, Yamazaki KR , Nunes AE, Pchevozniki IA, Pchevozniki MA, Nogata C Aikawa J, Bonatto JS, Brito G, Lissa DM, Fernandes CL (2007) Glutamine concentra­tion and immune response of spinal cord-injured rats. J Spinal Cord Med. 30: 140-146.
  • Taoka Y, Okajima K, Uchiba M, Murakami K, Kushimoto S, Johno M, Naruo M, Okabe H, Takatsuki K (1997) Role of neutrophils in spinal cord injury in the rat. J Neurosci 79: 1177-1182.
  • Taoka Y, Okajima K, Uchiba M, Murakami K, Harada N, Johno M and Naruo M (1998) Activated protein C reduc­es the severity of compression-induced spinal cord injury in rats by inhibiting activation of leukocytes. J Neurosci 18: 1393-1398.
  • Tator CH, Fehlings MG (1991) Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 75: 15-26.
  • Tator CH, Koyanagi I (1997) Vascular mechanisms in the pathophysiology of human spinal cord injury. J Neurosurg 86: 483-492.
  • Tator CH, McCormick PC, Piepmeier JM, Benzel EC, Young W (1998) Biology of neurological recovery and functional restoration after spinal cord injury. J Neurosurg 42: 696-708.
  • Tator CH (2006) Review of treatment trials in Human spinal cord injury: issues, difficulties, and recommendations. J Neurosurg 59: 957-987.
  • Teng YD, Lavik EB, Qu X, Ourednik J, Zurakowski D, Langer R, Snyder EY (2002) Functional recovery follow­ing traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci USA 99: 3024-3029.
  • Thuret S, Moon LD, and Gage FH (2006) Therapeutic inter­ventions after spinal cord injury. Nat Rev Neurosci 7: 628-643.
  • Torre JC (1981) Spinal cord injury: review of basic and applied research. Spine 6: 315-335.
  • Turrin NP, Rivest S (2006) Molecular and cellular immune mediators of neuroprotection. Mol Neurobiol 34: 221­242.
  • Von Boxberg Y, Salim C, Soares S, Baloui H, Alterio J, Ravaille-Veron M, Nothias F (2006) Spinal cord injury- induced up-regulation of AHNAK, expressed in cells delineating cystic cavities, and associated with neoangio- genesis. Eur J Neurosci 24: 1031-1041.
  • Vranken HM, Troost D, de Haan P, Pennings FA, van Marinus HM , Dijkgraaf GW, Hollmann MW(2006) Severe Toxic Damage to the Rabbit Spinal Cord after Intrathecal Administration of Preservative-free S(+)- Ketamine. Anesthesiology 105: 813-818.
  • Wallace MC, Tator CH, Frazee P (1986) Relationship between posttraumatic ischemia and hemorrhage in the injured rat spinal cord as shown by colloidal carbon angiography. Neurosurg 18: 433-439.
  • Wallace MC, Tator CH, Lewis AJ (1987) Chronic regenera­tive changes in the spinal cord after cord compression injury in rats. Surg Neurol 27: 209-219.
  • Wang WJ, Zhu H, Li F, Wan LD, Li HC, Ding WL (2009) Electrical StimulationPromotes Motor Nerve Regeneration Selectivity Regardless of End-Organ Connection. J Neurotrauma 26: 641-649.
  • Wang X, Nuttin B, Heremans H, Gybels R (1996) Production of tumor necrosis factor in spinal cord following trau­matic injury in rats. J Neuroimmunol 89: 151-156.
  • Webb AA, Sybil N, Fowler D (2010) Spinal cord injury I: A synopsis of the basic science. Can Vet J 51: 485-492.
  • Wells JE, Hurlbert RJ, Fehlings MG, Yong VW (2003) Neuroprotection by minocycline facilitates significant recovery from spinal cord injury in mice. Brain 126: 1628-1637.
  • Wenger M, Adam PA, Alarcon F , Markwalder TM (2003) Traumatic cervical instability associated with cord oede­ma and temporary quadriparesis. Spinal Cord 41: 521­526.
  • Whalen MJ, Dalkara T, You Z, Qiu J, Bermpohl D, Mehta N, Suter B, Bhide PG, Lo EH, Ericsson M, Moskowitz MA (2007) Acute plasmalemma permeability and pro­tracted clearance of injured cells after controlled cortical impact in mice. J Cereb Blood Flow Metab 28: 490­505.
  • Williams B, Terry AF, Jones F, McSweeney T (1981) Syringomyelia as a sequel to traumatic paraplegia. Paraplegia 19: 67-80.
  • Winkler T, Sharma HS, Stalberg E, Badgaiyan RD, Gordh T, Westman J, Badgaiyan R (2003) An L-type calcium channel blocker, nimodipine influences trauma induced spinal cord conduction and axonal injury in the rat. Acta Neurochir Suppl 86: 425-432.
  • Wu B, Ren X (2009) Promoting axonal myelation for improving neurological recovery in spinal cord injury. J Neurotrauma 26: 1847-1856.
  • Xiong Y, Peterson PL, Lee CP (1999) Effect of N-acetylcysteine on mitochondrial function following traumatic brain injury in rats. J Neurotrauma 16: 1067­1082.
  • Xiong Y, Rabchevsky AG, Hall ED (2007) Role of peroxyni- trite in secondary oxidative damage after spinal cord injury. J Neurochem 100: 639-649.
  • Xu W, Chi L, Xu R, Ke Y, Luo C, Cai J, Qiu M, Gozal D, Liu R (2005a) Increased production of reactive oxygen species contributes to motor neuron death in a compres­sion mouse model of spinal cord injury. Spinal Cord 43: 204-213.
  • Xu GY, Hughes MG, Zhang L, Cain L, McAdoo DJ (2005b) Administration of glutamate into the spinal cord at extra­cellular concentrations reached post-injury causes func­tional impairments. Neurosci Lett 384: 271-276.
  • Yakovlev AG, Faden AI (1994) Sequential expression of c-fos protooncogene, TNF-alpha, and dynorphin genes in spinal cord following experimental traumatic injury. Mol Chem Neuropathol 23: 179-190.
  • Young W (2002) Methylprednisolone and spinal cord injury. J Neurosurg 96: 141-142.
  • Yune TY, Lee JY, Jung GY, Kim SJ, Jiang MH, Kim YC, Oh YJ, Markelonis GJ, Oh TH (2007). Minocycline allevi­ates death of oligodendrocytes by inhibiting pro-nerve growth factor production in microglia after spinal cord injury. J Neurosci 2007: 7751-7761.
  • Zhang Z, Krebs CJ, Guth L (1997) Experimental analysis of progressive necrosis after spinal cord trauma in the rat: etiological role of the inflammatory response. Exp Neurol 143: 141-152.
  • Zhou L, Shine HD (2003) Neurotrophic factors expressed in both cortex and spinal cord induce axonal plasticity after spinal cord injury. J Neurosci Res 74: 221-226.
  • Zini I, Tomasi A, Grimaldi R, Vannini V, Agnati LF (1992) Detection of free radicals during brain ischemia and rep­erfusion by spin trapping and microdialysis. Neurosci Lett 138: 279-282.
Uwagi
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-14116689-883b-4036-9b70-3be57252cdb3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.