PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 21 | 2 |

Tytuł artykułu

Effect of differentiated phosphorus and potassium fertilization on maize grain yield and plant nutritional status at a critical growth stage

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Optimal nutrition of cultivated plants at critical growth stages is of great importance for the achievement of full crop yield potential. The aim of this study was to assess the maize yield response and plant nutritional status at a critical stage of growth (BBCH 17) under the most favourable and reduced fertilization with phosphorus and potassium. It was assumed that the nutritional status of maize at BBCH 17 stage significantly influenced the plant growth and yielding. The hypothesis was tested in a one-factorial trial, carried out on the maize variety Veritis in 2007-2011, which was a part of a long-term study started in 2000 according to a randomized complete block design. The factor tested comprised different phosphorus and potassium doses applied at constant levels of nitrogen and magnesium fertilization. The yields of maize significantly differed between the treatments and in relation to the control. In each year, maize responded with a lower yield to the no-phosphorus treatment when compared to the no-potassium treatment. Irrespective of the fertilization variants, the content of the nutrients tested (except iron) was below the standard value. A significant relationship was shown between the nutritional status of maize at the stage of 7 leaves unfolded (BBCH 17) and grain yield. The coefficients of determination ranging from 59% to 94% showed that, irrespective of which treatment was applied, the mineral nutrient content in maize leaves at BBCH 17 stage had the strongest influence on the maize yield.

Wydawca

-

Rocznik

Tom

21

Numer

2

Opis fizyczny

p.337-348,fig.,ref.

Twórcy

autor
  • Rychnowy, Akacjowa 10, 77-300 Czluchow, Poland
autor
  • Chair of Agricultural Chemistry and Environmental Biogeochemistry, Poznan University of Life Sciences, Wojska Polskiego str.71F, 60-625 Poznan, Poland

Bibliografia

  • Damon P.M, Rengel Z. 2007. Wheat genotypes differ in potassium efficiency under glasshouse and field conditions. Aust. J. Res., 58: 816-825.
  • Dobermann A., Cassan E.G., Mamarii C.P., Sheehy J.E. 1998. Management of phosphorus, potassium, and sulphur in intensive, irrigated lowland rice. Field Crop Res., 56: 113-138.
  • Gaj R. 2010a. Effect of different level of potassium fertilization on winter oilseed rape nutritional status at the initiation of the main stem growth and on the seed yield. Oilseed Crops, 31: 111-121. (in Polish)
  • Gaj R. 2010b. Influence of different potassium fertilization level on nutritional status of winter wheat and on yield during critical growth stage. J. Elem., 15(2), 269-277.
  • Gaj R. 2012. The effect of different phosphorus and potassium fertilization on plant nutrition in critical stage and yield of winter triticale. J. Central Europ. Agric., 13(4): 704-716. DOI: 10.5513/JCEA01/13.4.1116
  • Grzebisz W., Diatta J.B., Szczepaniak W. 2006. Productive and ecological backgrounds of arable soil liming. Fertilizers Fertilization, 2: 69-85.
  • Grzebisz W., Gaj R. 2007. Integrated production system of maize. IOR-PIB, Poznań, 19-24. ISBN 978-83-89867-16-2. (in Polish)
  • Hedlund A., Witter E., An B.X. 2003. Assessment of N, P, and K management by nutrient balances and flows on peri-urban smallholder farms in southern Vietnam. Eur. J.Agron., 20: 71-87.
  • Hinsinger P. 2001. Bio-availability of soil inorganic P in the rhizosphere as affected by root induced chemical changes: a review. Plant Soil, 237: 173-195.
  • Huang S., Zhang W., Yu X., Huang Q. 2010. Effects of long-term fertilization on corn productivity and its sustainability in an Ultisol of Southern China. Agric. Ecosyst. Environ., 138: 4450.
  • Jouany C., Colomb B., Bosc M. 1996. Long-term effects of potassium fertilization on yield and fertility status of calcareous soils of south-west France. Eur. J. Agron. 5: 287-294.
  • Jungk A. 2001. Root hairs and the acquisition of plant nutrients from soil. J. Plant Nutr. Soil Sci., 164: 121-129.
  • Eanabo I.A.K., Gilkes R.J. 1988. The effect of the level of phosphate rock application on its dissolution in soil and on bicarbonate-soluble phosphorus. Fert. Res., 16: 67-85.
  • Kidd P.S., Proctor J. 2001. Why plants grow poorly on very acid soils: Are ecologists missing the obvious? J. Exp. Bot., 52, 357: 791-799.
  • Kunzova E., Hejcman M. 2010. Yield development of winter wheat over 50 years of nitrogen, phosphorus and potassium appliction on greyic Phaeozem in the Czech Republic. Eur. J. Agron., 33:166-174.
  • Li L., Sun J., Zhang F., Li X., Yang S., Rengel z. 2001. Wheat/maize or wheat/soybean strip intercropping. I. Yield advantage and interspecific interactions on nutrients. Field Crops Res., 71: 123-137.
  • Ma Q., Niknam S.R., Turner D.W., 2006. Responses of osmotic adjustment and seed yield of Brassica napus and B. junacea to soil water deficit at different growth stages. Aust. J. Agric. Res., 57: 221-226.
  • Malo D.D., Schumacher T.E., Dooliile J.J. 2005. Long-term cultivation impacts on selected soil properties in the northern Great Plains. Soil Till. Res., 81: 277-291.
  • Marschner H. 1991. Mechanisms of adaptation of plants to acid soils. Plant Soil, 134: 1-20.
  • Marschner H., Kirkby E., Cakmak J. 1996. Effect of mineral nutritional status on shoot-root partitioning of photo assimilates and cycling of mineral nutrients. J. Exp. Bot., 47: 1255-1263.
  • Merbach W., Schmidt L., Wittenmayer L. 1999. Die Dauerdungungversuche in Halle (Saale), B.G. Teubner, Stuttgart-Leipzing, 56-65.
  • Nieves-Corones M., Aleman F., Martinez V., Rubio F. 2014. K+ uptake in plant roots. The systems involved, their regulation and parallels in other organisms. J. Plant Physiol., 171: 688-695.
  • Öborn I., Andrist-Rangel Y., Askekaard M., Grant C.A., Watson C.A., Edwards A.C. 2005. Critical aspects of potassium management in agricultural systems. Soil Use Manage., 21: 102-112.
  • Pypers P., Huybrighs M., Diels J., Abaidoo R., Smolders E., Merckx R. 2007. Does the enhanced P acquisition by maize following legumes in a rotation result from improved soil P abvail-abilty? Soil Biol. Biochem., 39: 2555-2566.
  • Romheld V., Kirkby E.A. 2010. Research on potassium in agriculture: needs and prospects. Plant Soil., 335:155-180.
  • Schulte E., Kelling K. 2000. Plant analysis: A diagnostic tool. University of Wisconsin-Madison. www.ces.pardue.edu/extmedia/NCH/NCH-46.html
  • Shen J., Li R., Zhang F., Fan J., Tang C., Rengel z. 2004. Crop yields, soil fertility and phosphorus fractions in response to long-term fertilization under the rice monoculture system on a calcareous soil. Field Crops Res., 86: 225-238.
  • Shenoy V.V., Kalagudi G.M. 2005. Enhancing plant phosphorus use efficiency for suitable cropping. Biotechnol. Adv., 23: 501-513.
  • Smil V. 1999. Crop residues: Agriculture's largest harvest. Bioscience, 49 :299-308.
  • Stępień W., Mercik S. 1999. Changes in the phosphorus and potassium content in soil and crop yielding in a 30-year time period, on soil fertilized and not fertilized with these nutrients. Zesz. Probl. Post. Nauk Rol., 467: 269-278. (in Polish)
  • Szczepaniak W. 2004. Plants' response to potassium fertilization. J. Elem., 9(4): 57-66. (in Polish)
  • Tan D., Jin J., Jiang L., Huang S., Liu Z. 2012. Potassium assessment of grain production in North China. Agric. Ecosyst. Environ., 148: 65-71.
  • Van Breeman, N., Nulder J., Driscoll C. T. 1983. Acidification and alkalinization of soils. Plant Soil, 75: 383-308.
  • Vanlauwe B., Diels J., Ginga N., Carsky R.J., Deckers J., Mercky R. 2000. Utilization of rock phosphate on a representative toposequence in the Northern Guinea savanna zone of Nigeria: Response by maize to previous herbaceous legume cropping and rock phosphate treatments. Soil Biol. Biochem., 32: 2079-2090.
  • Vogeler I., Rogasik J., Funder U., Panten K., Schnug E. 2009. Effect of tillage systems and P-fertilization on soil physical and chemical properties, crop yield and nutrient uptake. Soil Till. Res., 103: 137-143.
  • White P.J. 2000. Calcium channels in higher plants. Biochim. Biophys. Acta, 1465: 171-189.
  • Woodend J.J., Glas A.D.M., 1993. Genotype-environment interaction and correlation between vegetative and grain production measures of potassium use-effciency in wheat (T. aestivum L.) grown under potassium stress. Plant Soil, 151:39-44.
  • Xu R., Zhao A., Li Q., Kong x., Ji Q. 2003. Acidity regime of Red Soils in a subtropical region of southern China field conditions. Geoderma, 115: 75-84.
  • Yang X.E., Liu J.X., Wang W.M., Ye z.Q., Luo A.C. 2004. Potassium internal use efficiency relative to growth vigor, potassium distribution and carbohydrate allocation in rice genotypes. J. Plant Nutr., 27:837-852.
  • Zhang M.K., Xu J.M . 2005. Nestorian of surface soil fertility of an eroded red soil in southern China. Soil Till. Res., 80: 13-21.
  • Zőrb Ch., Senbayram M., Peiter E. 2014. Potassium in agriculture - status and perspectives. J. Plant Physiol., 171: 656-669.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-13b48f0d-8731-454e-93cc-31c447bb3768
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.