PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2017 | 78 |

Tytuł artykułu

Tree architecture description using a single-image photogrammetric method

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Tree architecture is thought to allow species to share available resources both above and below ground. The description of plant architecture is useful to model plant structure and function, as well as interactions with other species or generally with the environment. The aim of this study was to present a conceptual implementation of a simple photogrammetric method for the above-ground tree architecture description of leafless individuals growing under different conditions. The implemented method was single- image photogrammetry. The novel aspect is the heuristic assumption that tree’s image is a projection onto a plane that cross-sections the stem base; which enables assessment of a set of the canopy attributes, with only one image involved. The method was tested in two ways: (1) in the field: in terms of its applicability to real trees, we used 31 plots with different terrain slope and tree density, in natural forest, in every case the target tree was European beech (Fagus sylvatica L.) which is known as a very plastic tree species, and (2) with virtual tree-like 3D models, created with L-system rules, to determine the accuracy of the method. Some of the traits measured or estimated with respect to the projection plane α are: the length of the trunk and branches (L), inclination of the tree main axis from the vertical (IA), crown width (CW), two opposite crown radius (CR), crown length (CL); and the external factors, like the terrain slope inclination (S) and number of trees competing for light (N). The advantages (e.g., low time consumption and low cost), difficulties (e.g., occlusion of tree tops) and accuracy in idealised conditions were described. The tree traits that can be measured using the proposed method are essential for estimating many ecological parameters. Our method allows reducing fieldwork time to a minimum and taking measurements of large numbers of plots daily when the environmental conditions are similar, even when they are taken by only one person. This method is very useful for conducting studies on a temporal scale (e.g., to record changes in the branching structure). Future research is needed to validate the method in different environments.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

78

Opis fizyczny

p.124–135,fig.,ref.

Twórcy

Bibliografia

  • Ashcroft MB, Gollan JR & Ramp D (2014) Creating vegetation density profiles for a diverse range of ecological habitats using terrestrial laser scanning. Methods in Ecology and Evolution 5: 263–272. doi:10.1111/2041-210x.12157.
  • Bartelink HH (1997) Allometric relationships for biomass and leaf area of beech (Fagus sylvatica L). Annales Des Sciences Forestieres 54: 39–50. doi:10.1051/forest:19970104.
  • Bauwens S, Fayolle A, Gourlet-Fleury S, Ndjele LM, Mengal C & Lejeune P (2017) Terrestrial photogrammetry: a non-destructive method for modelling irregularly shaped tropical tree trunks. Methods in Ecology and Evolution 8: 460–471. doi:10.1111/2041-210x.12670.
  • Calders K, Newnham G, Burt A, Murphy S, Raumonen P, Herold M, Culvenor D, Avitabile V, Disney M, Armston J & Kaasalainen M (2015) Nondestructive estimates of above-ground biomass using terrestrial laser scanning. Methods in Ecology and Evolution 6: 198–208. doi:10.1111/2041-210x.12301.
  • Chi F, Kurth W & Streit K (2016) Generating 3D models from a single 2D digitized photo using GIS and GroIMP. 2016 IEEE International Conference on Functional-Structural Plant Growth Modeling, Simulation, Visualization and Applications (FSPMA): 22–27.
  • Delagrange S & Rochon P (2011) Reconstruction and analysis of a deciduous sapling using digital photographs or terrestrial-LiDAR technology. Annals of Botany 108: 991–1000. doi:10.1093/aob/mcr064.
  • Fleck S, Moelder I, Jacob M, Gebauer T, Jungkunst HF & Leuschner C (2011) Comparison of conventional eight-point crown projections with LIDAR-based virtual crown projections in a temperate old-growth forest. Annals of Forest Science 68: 1173–1185. doi:10.1007/s13595-011-0067-1.
  • Giuliani R, Magnanini E, Fragassa C & Nerozzi F (2000) Ground monitoring the light-shadow windows of a tree canopy to yield canopy light interception and morphological traits. Plant Cell and Environment 23: 783–796. doi:10.1046/j.1365-3040.2000.00600.x.
  • Godin C, Costes E & Sinoquet H (1999) A method for describing plant architecture which integrates topology and geometry. Annals of Botany 84: 343–357. doi:10.1006/anbo.1999.0923.
  • Grussenmeyer P, Hanke K & Streilein A (2002) Architectural photogrammetry: Digital photogrammetry (ed. by M Kasser & Y Egels) Taylor & Francis, London.
  • Hackenberg J, Morhart C, Sheppard J, Spiecker H & Disney M (2014) Highly accurate tree models derived from Terrestrial Laser Scan Data: A method description. Forests 5: 1069–1105. doi:10.3390/f5051069.
  • Kaminuma E, Heida N, Tsumoto Y, Yamamoto N, Goto N, Okamoto N, Konagaya A, Matsui M & Toyoda T (2004) Automatic quantification of morphological traits via three-dimensional measurement of Arabidopsis. Plant Journal 38: 358–365. doi:10.1111/j.1365-313X.2004.02042.x.
  • Koike F (1985) Reconstruction of two-dimensional tree and forest canopy profiles using photographs. Journal of Applied Ecology 22: 921–929. doi:10.2307/2403240.
  • Lang ARG (1973) Leaf orientation of a cotton plant. Agricultural Meteorology 11: 37–51. doi:10.1016/0002-1571(73)90049-6.
  • Larjavaara M & Muller-Landau HC (2013) Measuring tree height: a quantitative comparison of two common field methods in a moist tropical forest. Methods in Ecology and Evolution 4: 793–801. doi:10.1111/2041-210x.12071.
  • Monsi M & Saeki S (1953) Über den lichtfaktor in den pflanzengesellschaften und seine bedeutung für die stoffproduktion. Japanese Journal of Botany 14: 22–52.
  • Parker GG, Harding DJ & Berger ML (2004) A portable LIDAR system for rapid determination of forest canopy structure. Journal of Applied Ecology 41: 755–767. doi:10.1111/j.0021-8901.2004.00925.x.
  • Phattaralerphong J, Sathornkich J & Sinoquet H (2006) A photographic gap fraction method for estimating leaf area of isolated trees: assessment with 3D digitized plants. Tree Physiology 26: 1123–1136.
  • Polhemus Incorporated (1993) 3SPACE FASTRAK User’s Manual: F. Polhemus Inc., Colchester, VT, USA.
  • QGIS Development Team (2016) QGIS Geographic Information System. Open Source Geospatial Foundation Project.
  • R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  • Raumonen P, Casella E, Calders K, Murphy S, Akerblom M & Kaasalainen M (2015) Massive-scale tree modelling from TLS data. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences II-3W4: 189–196. doi:10.5194/isprsannals-II-3-W4-189-2015.
  • Raumonen P, Kaasalainen M, Akerblom M, Kaasalainen S, Kaartinen H, Vastaranta M, Holopainen M, Disney M & Lewis P (2013) Fast automatic precision tree models from terrestrial laser scanner data. Remote Sensing 5: 491–520. doi:10.3390/rs5020491.
  • Reche A, Martin I & Drettakis G (2004) Volumetric reconstruction and interactive rendering of trees from photographs. ACM Transactions on Graphics 23: 720–727. doi:10.1145/1015706.1015785.
  • de Reffye P, Edelin C, Francon J, Jaeger M & Puech C (1988) Plant models faithful to botanical structure and development, Vol. 22: Computer Graphics (SIGGRAPH’ 88 Proceedings) (ed. by J Dill), pp. 151–158.
  • Shlyakhter I, Rozenoer M, Dorsey J & Teller S (2001) Reconstructing 3D tree models from instrumented photographs. IEEE Computer Graphics and Applications 21: 53–61. doi:10.1109/38.920627.
  • Sievänen R, Godin C, DeJong TD & Nikinmaa E (2014) Functional-structural plant models: a growing paradigm for plant studies. Annals of Botany 114: 599–603. doi:10.1093/aob/mcu175.
  • Sinoquet H, Moulia B & Bonhomme R (1991) Estimating the three-dimensional geometry of a maize crop as an input of radiation models – comparison between three-dimensional digitizing and plant profiles. Agricultural and Forest Meteorology 55: 233–249. doi:10.1016/0168-1923(91)90064-w.
  • Sinoquet H, Rivet P & Godin C (1997) Assessment of the three-dimensional architecture of walnut trees using digitising. Silva Fennica 31: 1–9.
  • Skovsgaard JP & Nord-Larsen T (2012) Biomass, basic density and biomass expansion factor functions for European beech (Fagus sylvatica L.) in Denmark. European Journal of Forest Research 131: 1035–1053. doi:10.1007/s10342-011-0575-4.
  • Tanaka T, Yamaguchi J & Takeda Y (1998) Measurement of forest canopy structure with a laser plane range-finding method – development of a measurement system and applications to real forests. Agricultural and Forest Meteorology 91: 149–160. doi:10.1016/s0168-1923(98)00081-1.
  • Tommaselli AMG & Reiss MLL (2005) A photogrammetric method for single image orientation and measurement. Photogrammetric Engineering and Remote Sensing 71: 727–732.
  • Tyree MT & Ewers FW (1991) The hydraulic architecture of trees and other woody plants. New Phytologist 119: 345–360. doi:10.1111/j.1469-8137.1991.tb00035.x.
  • Van Elsacker P, Keppens H & Impens I (1983) A simple photographical method for analyzing the radiation interception by an individual tree. Agricultural Meteorology 29: 285–298. doi:10.1016/0002-1571(83)90089-4.
  • Walklate PJ (1989) A laser scanning instrument for measuring crop geometry. Agricultural and Forest Meteorology 46: 275–284. doi:10.1016/0168-1923(89)90031–2.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-13900a50-89ec-4490-9eaa-813056b5a54a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.