EN
Salinity is an important abiotic factor that limits plant growth and development. The influence of salt stress induced by sodium chloride on plant growth, proline content, level of lipid peroxidation and activities of antioxidative enzymes was studied in F1 hybrid DH10 and four dihaploid lines (207B, 238C, 239K, 244B) of tobacco (Nicotiana tabacum L.). Dihaploids were obtained from anther-derived haploids of hybrid DH10 and were previously proved to be tolerant to Potato virus Y (PVY). In our study, plants were grown in vitro and exposed to NaCl (100 and 200 mM) for 33 days. All dihaploids and hybrid DH10 showed reduced growth after NaCl treatment. They accumulated significant amounts of sodium and proline in response to salt stress as have already been observed in tobacco and other plant species. In tobacco exposed to NaCl the lipid peroxidation level did not increase and activities of superoxide dismutase (SOD), guaiacol peroxidase (POD), ascorbate peroxidase and catalase (CAT) mostly did not change significantly. The exception was line 239K where salt induced higher activities of SOD, CAT and POD. Two (238C and 244B) out of four dihaploids appeared more susceptible to salt stress as they showed weak growth in correlation with high proline and sodium content. Therefore, it seems that salt tolerance is not associated with tolerance to PVY. Variations in malondi-aldehyde and proline content as well as in enzymes activities observed among tobacco lines imply that dihaploids have different genetic properties which might result in different sensitivity to NaCl.