Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 09 | 1 |
Tytuł artykułu

Field identification of the cryptic vespertilionid bats, Myotis lucifugus and M. yumanensis

Warianty tytułu
Języki publikacji
Recent advances in molecular techniques have provided new tools for confirming species identities, however they can be expensive and results are not immediately available. Myotis lucificugus and M. yumanensis are morphologically cryptic species of bats sympatric in western North America that can be difficult to distinguish in the field. We evaluated a set of models that used morphological and echolocation call characters obtained in the field to predict species identity as determined by DNA analysis. We constructed models using data from 98 M. lucifugus and 100 M. yumanensis captured throughout the Pacific Northwest from which we had obtained high-quality, time-expansion recordings of their echolocation calls. The best model for distinguishing the species combined forearm length and characteristic frequency of echolocation calls and was able to identify 92% of M. lucifugus and 91% of M. yumanensis individuals, with ≥95% confidence. We evaluated the applicability of our model by testing it on additional datasets. Our model correctly classified 83% of M. lucifugus (n = 30) and 93% of M. yumanensis (n = 29) individuals captured in north-central Oregon, whose echolocation calls were recorded using a zero-crossings echolocation detection system. It also correctly classified 86% of M. lucifugus (n = 22) and 85% of M. yumanensis (n = 26) individuals, captured throughout our study area, for which only poor-quality time-expansion recordings of echolocation calls were obtained. Combining morphometrics with echolocation call characteristics may be a useful approach for distinguishing among pairs of cryptic species of bats in other areas.
Opis fizyczny
  • Pacific Southwest Research Station, USDA Forest Service, 1700 Bayview Drive, Arcata, CA 95521, USA
  • 1. Animal Care and Use Committee 1998. Guidelines for the capture, handling, and care of mammals as approved by the American Society of Mammalogists. Journal of Mammalogy 79:1416–1431. Google Scholar
  • 2. R. G. Bailey 1995. Description of the ecoregions of the United States 2nd editionUSDA Forest Service Miscellaneous Publication 1391. Washington, D.C. 108. pp. Google Scholar
  • 3. R. J. Baker 1984. A sympatric cryptic species of mammal: a new species of Rhogeesa (Chiroptera: Vespertilionidae). Systematic Zoology 33:178–183. Google Scholar
  • 4. R. M R. Barclay and R. M. Brigham . 2004. Geographic variation in the echolocation calls of bats: a complication for identifying species by their calls. Pp 144–149. in Bat echolocation research: tools, techniques, and analysis R. M. Brigham, E. K V. Kalko, G. Jones, S. Parsons, and H. J G. A. Limpens , editors. eds. Bat Conservation International. Austin, Texas. 167. pp. Google Scholar
  • 5. R. D. Barratt, T. M. Burland, M. W. Bruford, G. Jones, P. A. Racey, and R. K. Wayne . 1997. DNA answers the call of pipistrelle bat species. Nature 387:138–139. Google Scholar
  • 6. B. J. Betts 1998. Effects of interindividual variation in echolocation calls on identification of big brown and silver-haired bats. Journal of Wildlife Management 62:1003–1010. Google Scholar
  • 7. W. Bogdanowicz 1990. Geographic variation and taxonomy of Daubenton's bat, Myotis daubentoni, in Europe. Journal of Mammalogy 71:205–218. Google Scholar
  • 8. R. D. Bradley and R. J. Baker . 2001. A test of the genetic species concept: cytochrome-b sequences and mammals. Journal of Mammalogy 82:960–973. Google Scholar
  • 9. E. R. Britzke and K. L. Murray . 2000. A quantitative method for selection of identifiable search-phase calls using the Anabat system. Bat Research News 41:33–36. Google Scholar
  • 10. H. G. Broders, C. S. Findlay, and L. Zheng . 2004. Effects of clutter on echolocation call structure of Myotis septentrionalis and M. lucifugus. Journal of Mammalogy 85:273–281. Google Scholar
  • 11. C. D. Burnett 1983. Geographic and climatic correlates of morphological variation in Eptesicus fuscus. Journal of Mammalogy 64:437–444. Google Scholar
  • 12. K. P. Burnham and D. R. Anderson . 2002. Model selection and multi-model inference: a practical information-theoretic approach 2nd editionSpringer-Verlag. New York. 488. pp. Google Scholar
  • 13. C. Corben and M. J. O'Farrell . 1999. Anabat system manual 2nd editionO'Farrell Biological Consulting. Las Vegas, Nevada. Available online at Google Scholar
  • 14. A. Denzinger, B. M. Siemers, A. Schaub, and H-U. Schnitzler . 2001. Echolocation by the barba-stelle bat, Barbastrella barbastrellus. Journal of Comparative Physiology 187:521–528. Google Scholar
  • 15. M. B. Fenton 2000. Choosing the ‘correct’ bat detector. Acta Chiropterologica 2:215–224. Google Scholar
  • 16. M. B. Fenton and R. M R. Barclay . 1980. Myotis lucifugus. Mammalian Species 142:1–8. Google Scholar
  • 17. A. H. Fielding and P. F. Haworth . 1995. Testing the generality of bird-habitat models. Conservation Biology 9:1466–1481. Google Scholar
  • 18. J. S. Findley and G. Traut . 1970. Geographic variation in Pipistrellus hesperus. Journal of Mammalogy 51:741–765. Google Scholar
  • 19. A. H. Harris 1974. Myotis yumanensis in interior southwestern North America, with comments on Myotis lucifugus. Journal of Mammalogy 55:589–607. Google Scholar
  • 20. P. D N. Hebert, E. H. Penton, J. M. Burns, D. H. Janzen, and W. Hallwachs . 2004. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astrapes fulgerator. Proceedings of the National Academy of Sciences 101:14812–14817. Google Scholar
  • 21. R. M. Herd 1983. A simple antibody test for field identification of morphologically similar mammals. Journal of Mammalogy 64:700–701. Google Scholar
  • 22. R. M. Herd and M. B. Fenton . 1983. An electrophoretic, morphological, and ecological investigation of a putative hybrid zone between Myotis lucifugus and Myotis yumanensis (Chiroptera: Vespertilionidae). Canadian Journal of Zoology 61:2029–2050. Google Scholar
  • 23. M. D. Hovorka, C. S. Marks, and E. Muller . 1996. An improved chemiluminescent tag for bats. Wildlife Society Bulletin 24:709–712. Google Scholar
  • 24. S. H. Hurlbert 1984. Pseudoreplication and the design of ecological field experiments. Ecological Monographs 54:187–211. Google Scholar
  • 25. D. S. Jacobs, G. N. Eick, M. C. Schoeman, and C. A. Matthee . 2006. Cryptic species in an insectivorous bat, Scotophilus dinganii. Journal of Mammalogy 87:161–170. Google Scholar
  • 26. G. Jones and S. M. van Parijs . 1993. Bimodal echolocation in pipistrelle bats: are cryptic species present?. Proceedings of the Royal Society of London 251:119–125. Google Scholar
  • 27. T. M J. Luszcz, J. M K. Rip, K. J. Patriquin, L. M. Hollis, J. M. Wilson, H. D M. Clarke, R. M R. Barclay, and J. Zinck . 2003. Comparisons of morphology, echolocation call structure, and genetics of Myotis lucifugus and Myotis yumanensis. Bat Research News 44:156. Google Scholar
  • 28. F. Mayer and O. von Helversen . 2001. Cryptic diversity in European bats. Proceedings of the Royal Society of London 268:1825–1832. Google Scholar
  • 29. K. L. Murray, E. R. Britzke, and L. W. Robbins . 2001. Variation in search-phase calls of bats. Journal of Mammalogy 82:728–737. Google Scholar
  • 30. D. W. Nagorsen and R. M. Brigham . 1993. The Bats of British Columbia UBC Press. Vancouver, British Columbia. 164. pp. Google Scholar
  • 31. M. K. Obrist 1995. Flexible bat echolocation — the influence of individual, habitat and conspecifics on sonar signal-design. Behavioral Ecology and Sociobiology 36:207–219. Google Scholar
  • 32. M. J. O'Farrell, B. W. Miller, and W. L. Gannon . 1999. Qualitative identification of free-flying bats using the Anabat detector. Journal of Mammalogy 80:11–23. Google Scholar
  • 33. M. J. O'Farrell, C. Corben, and W. L. Gannon . 2000. Geographic variation in the echolocation calls of the hoary bat (Lasiurus cinereus). Acta Chiropterologica 2:185–196. Google Scholar
  • 34. A. Parkinson 1979. Morphological variation and hybridization in Myotis yumanensis sociablis and Myotis lucifugus carissima. Journal of Mammalogy 60:489–504. Google Scholar
  • 35. P. A. Racey 1988. Reproductive assessment in bats. Pp 31–45. in Ecological and behavioral methods for the study of bats T. H. Kunz , editor. ed. Smithsonian Institution. Washington, D.C. 533. pp. Google Scholar
  • 36. A. W. Reed, P. K. Kennedy, M. L. Beck, and M. L. Kennedy . 2004. Using morphologic characters to identify Peromyscus in sympatry. American Midland Naturalist 152:190–195. Google Scholar
  • 37. R. M. Rodriguez and L. K. Ammerman . 2004. Mitochondrial DNA divergence does not reflect morphological difference between Myotis californicus and Myotis ciliolabrum. Journal of Mammalogy 85:842–851. Google Scholar
  • 38. I. R M. Russo, C. T. Chimimba, and P. Bloomer . 2006. Mitochondrial DNA differentiation between two species of Aethomys (Rodentia: Muridae) from southern Africa. Journal of Mammalogy 87:545–553. Google Scholar
  • 39. M. B. Saunders and R. M R. Barclay . 1992. Ecomorphology of insectivorous bats: a test of predictions using two morphologically similar species. Ecology 73:1335–1345. Google Scholar
  • 40. S. A. Scott 2005. Identification and distribution of Myotis yumanensis and Myotis lucifugus bats in Oregon M. Sci. Thesis. Portland State University. Portland, Oregon. 204. pp. Google Scholar
  • 41. B. M. Siemers 2004. Bats in the field and in a flight cage: recording and analysis of their echolocation calls and behavior. Pp 107–113. in Bat echolocation research: tools, techniques, and analysis R. M. Brigham, E. K V. Kalko, G. Jones, S. Parsons, and H. J G. A. Limpens , editors. eds. Bat Conservation International. Austin, Texas. 167. pp. Google Scholar
  • 42. J. M. Szewczak 2000. A consistent acoustic feature to discriminate Myotis species. Bat Research News 41:141. Google Scholar
  • 43. J. M. Szewczak 2004. Advanced analysis techniques for identifying bat species. Pp 121–127. in Bat echolocation research: tools, techniques, and analysis R. M. Brigham, E. K V. Kalko, G. Jones, S. Parsons, and H. J G. A. Limpens , editors. eds. Bat Conservation International. Austin, Texas. 167. pp. Google Scholar
  • 44. D. W. Thomas, G. P. Bell, and M. B. Fenton . 1987. Variation in echolocation call frequencies recorded from North American vespertilionid bats: a cautionary note. Journal of Mammalogy 68:842–847. Google Scholar
  • 45. B. J. Verts and L. N. Carraway . 1998. Land mammals of Oregon University of California Press. Berkeley, California. 668. pp. Google Scholar
  • 46. D. L. Waldien and J. P. Hayes . 1999. A technique to capture bats using hand-held mist nets. Wildlife Society Bulletin 27:197–200. Google Scholar
  • 47. D. A. Waters and G. Jones . 1995. Echolocation call structure and intensity in five species of insectivorous bats. Journal of Experimental Biology 198:475–489. Google Scholar
  • 48. D. A. Waters and W. L. Gannon . 2004. Bat call libraries: management and potential use. Pp 150–157. in Bat echolocation research: tools, techniques, and analysis R. M. Brigham, E. K V. Kalko, G. Jones, S. Parsons, and H. J G. A. Limpens , editors. eds. Bat Conservation International. Austin, Texas. 167. pp. Google Scholar
  • 49. J. Worthington Wilmer and E. Barratt . 1996. A non-lethal method of tissue sampling for genetic studies of chiropterans. Bat Research News 37:1–3. Google Scholar
  • 50. J. M. Zinck, D. A. Duffield, and P. C. Ormsbee . 2004. Primers for identification and polymorphism assessment of vespertilionid bats in the Pacific Northwest. Molecular Ecology Notes 4:239–242. Google Scholar
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.