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Optimization of work parameters of gaseous SI engine
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Summary. Results of numerical analysis of methane combus-
tion in SI engine are presented in the paper. Work parameters 
of engine fuelled with methane lean mixtures of O = 1.4 for 
several ignition advance angles are compared. The results of 
analysis proved that using ignition advance 6° CA before TDC, 
caused that engine work parameters (pressure, temperature and 
pressure growth speed) are correct and optimal. Simultaneously, 
the emission of nitric oxide was decreased compared to early 
ignition advance angles.
Key words: SI engine, methane, numerical modelling, lean 
mixture.

INTRODUCTION

One of the research activities carried out in the Institute 
of Thermal Machinery is 3D modelling of combustion in 
spark ignition engine fuelled with gasoline, gas and lean 
mixtures this fuels [1-15]. The calculations are performed 

advance angle to stationary gaseous engines parameters, 
operating at constant rotational speed and driving electric 
generators. Such engines can be fuelled with natural gas, 
biogas (waste dump gas, sewage gas) or mine gas as well 
as fuels containing methane. The containment of methane 
in above mentioned fuels differs according to the origin of 
the fuel. The natural gas contains approx. 98% of methane, 
biogas contains approx. 40-60%, and main gas obtained 
during the exploitation of the mine contains approximately 
25-60% of methane. The containment of methane in mine 
gas differs for different coal deposits, the way it is exploited 
and time.

The paper is the continuation of numerical analysis of 
combustion in gaseous SI engine model fuelled with lean 
mixtures [23, 24].

MODEL OF ENGINE

The engine model was prepared according to the test 

single-cylinder, high-pressure S320ER engine, which has 
been rebuilt in order to apply multipoint spark ignition [25]. 
The main engine parameters are presented in Table 1.

1 . Main engine parameters

Engine capacity 1810 cm3

Number of cylinders 1

Cylinder alignment horizontal

Cylinder diameter 120 mm

Crank throw 80 mm

Crankshaft length 275 mm

Piston stroke 160 mm

Compression ratio 8.5

Rotational speed 1000 rev/min

The application of multipoint spark ignition in the test 
engine allowed to fuel the engine with lean mixtures of 
liquid and gaseous fuels of air excess factor O

in piston engine combustion chambers of various geometry 
with taking turbulence and heat exchange into consideration.

The geometric mesh (Figure 1) describing the combus-
tion chamber of the test engine was generated in the pre-pro-

COMBUSTION MODELLING

The simulation of combustion process was performed 
for gaseous fuel (methane) at air excess factor value O = 
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1.4, one central spark plug and eight values of the ignition 

top dead center (TDC).
The chemical reaction of methane combustion model in 

the oxidation of fuel and the following three reactions de-
scribe the NO formation according to extended Zeldowich 
mechanism [27].

nism [27].
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The coefficients of NO formation kinetic reaction rate are necessary to perform the 

are necessary to perform the calculations and they were 
chosen on the basis of the literature studies [28].

The results of numerical modelling are presented in 
graphical form. The distribution of temperature and nitric 
oxide concentration in the combustion chamber are pre-
sented using Tecplot 360 postprocessing software [29]. The 
courses of pressure, temperature, NO and CO

2
 concentration 

(averaged values for the volume of combustion chamber) in 
function of crank angle are also presented.

NUMERICAL ANALYSIS RESULTS

-
perature and nitric oxide concentration in the combustion 
chamber, which occurred for the analyzed ignition advanced 
angles. Moreover, courses of pressure, temperature, NO 
and CO

2
 concentration (averaged values for the volume 

of combustion chamber) in function of crank angle are 
depicted. The temperature distribution is presented at crank 
angle in TDC. The NO distribution is presented at crank 
angle corresponding with the maximal concentration of 
this compound.

The temperature distribution as well as pressure courses 
(averaged values for the volume of combustion chamber) 

Fig. 2. Temperature distribution for three example ignition ad-
vance angles 2qCA, 10qCA, 16qCA before TDC

Fig. 2 reveals that the combustion process was intensi-

phenomenon is clearly seen in case of ignition advance an-
gle equal 16qCA before TDC. In this case, the combustion 
process takes place in almost whole volume of the chamber.

Fig. 3 and 4 depict pressure and temperature courses 
(averaged values for the volume of combustion chamber) 
in function of crank angle.

Fig. 3. In cylinder pressure courses for selected ignition advance 
angle values

In case of 2qCA ignition advance angle value, the pres-
sure in the cylinder reaches its maximal value equal 4.1 
MPa at 376qCA. The increase in the ignition advance angle 
to 16qCA before TDC causes the 24% increase in maximal 
pressure value.

The maximal pressure values occur earlier than in the 
q

difference in crank angle are 12qCA. It proves that the com-

earlier ignition. It is clearly seen on a chart depicting the 

Fig. 1. Geometric mesh in cartesian co-ordinate system
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2qCA ignition advance angle value, this parameter reaches 
maximal value of 0.42 MPa/q at 372qCA. In case of 16qCA 
ignition advance angle value, dp/dM is two times bigger and 
reaches the value of 0.84 MPa/q at 361q CA.

Fig. 5. Pressure increase courses in function of crank angle for 
selected ignition advance angle values

Taking into consideration the above mentioned data, it 

not purposeful. The difference in maximal values of temper-

(Fig. 5) can lead to hard and noisy operation, which applies 
dynamic load to crankshaft and piston.

Increase the ignition advance angle value, causes in-

Fig. 6 depicts the nitric oxide distribution in the com-
bustion chamber for the three example ignition advance an-
gles 2qCA, 10qCA, 16qCA before TDC. The pictures depict 
maximal values of nitric oxide concentration and which are 
prepared in the same scale. It can be noticed that increasing 

NO concentration in the cylinder volume.
For 2qCA ignition advance angle value, the nitric ox-

ide concentration (the averaged value for the volume of 

value equal 2930 ppm at 394qCA. In case of 10qCA igni-
tion advance angle value, the NO concentration increased 
by 65% up to 4850 ppm at 387qCA. For 16qCA ignition 
advance angle value, the NO concentration increased by 

80% (5285 ppm) in comparison with case of 2qCA ignition 
advance angle.

NO distribution (actual maximum values at 46q, 28q, 25q
CA after TDC) for three example ignition advance angles 2qCA,
10qCA, 16qCA before TDC

Variations of NO concentration (mean values for cylinder 
volume) for selected ignition advance angle values

The above analysis proves, that increasing the ignition 
advance angle value to about 12qCA, 14qCA, 16qCA before 
TDC is not favourable. The pressure increase in the cylinder 
is too big, which can result in very hard engine operation and 

The chart depicted in Fig. 8. shows the variations of CO
2

concentration, which were occurred during modelled engine 
operation for all ignition advance angle values. The carbon 
dioxide emission values are mean values, calculated for the 
whole volume of cylinder. The maximal concentration of 
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Fig. 4. In cylinder temperature courses for selected ignition ad-
vance angle values
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this compound was 7,2% and was obtained at different crank 
angles depending on the value of ignition advance angle. 
With the increase of ignition angle, the maximal concentra-
tion of CO

2
 was obtained faster.

The results of these tests were compared with those of 
a engine powered by a mixture of O
this case (O = 1.2) the optimal ignition advance angle was 
2qCA before TDC.

The comparison shows that for the selected ignition ad-
vance angle much more preferred to use a leaner mixture. 
Although much smaller value of the pressure growth speed 
in this case, in the exhaust gas components is about 12% less 
CO

2
 and up to almost 50% less nitrogen oxide.

CONCLUSIONS

The results of 3D modelling of methane combustion 
showed, that using earlier ignition advance angle caused 

80% for 16qCA ignition advance angle value. The differ-

High values of pressure growth speed (maximal value of 
0,83 MPa/q) can lead to noisy and hard engine operation.

The optimal value of ignition advance angle appears 
to be 6qCA before TDC. In this case model engine work 
parameters are proper and suitable to combustion lean gas-
eous mixture methane and air. The pressure in the cylinder 
reaches its maximal value equal 4.5 MPa at 372qCA and 
pressure increase is 0,53 MPa/q. Concentration of NO reach-
es its maximal value equal 3760 ppm at 387qCA and this is 
about 30% lower in comparison with case 16qCA ignition 
advance angle.

The results of numerical analysis can be used in station-
ary gaseous engines, operating at constant rotational speed 
and driving electric generators. Such engines can be fuelled 
with lean mixtures fuels containing methane and air.
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Wyniki analizy numerycznej spalania metanu 

Silniki SI, metan, modelowanie numeryczne, 
uboga mieszanka.


