PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 69 | 3 |

Tytuł artykułu

Assessment of the nutritional safety of new potatoes imported to Poland using an ascorbate-nitrate index

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background. New potatoes are imported to Poland mainly from the Mediterranean countries. In climate of the Mediterranean Basin potatoes can be grown twice a year. The different environment conditions during plant growth have effect on the tuber quality. Objective. The aim of the study was to assess the nutrition safety of new potatoes imported to Poland in the winter period from Mediterranean countries on the basis of the ascorbate-nitrate index. Material and methods. The study material included potatoes imported from Cyprus, Egypt and Israel, purchased in the Siedlce city, from the beginning of February to the end of March 2015. Laboratory tests were performed on a total of 54 potato samples. The contents of L-ascorbic acid was determined by titration method with the 2,6- dichlorophenolindophenol according to Tillmans and nitrate by spectrophotometric method based on the Griess reaction. The ascorbate-nitrate index (IAN) as the ratio of L-ascorbic acid amount-to-nitrate amount in potato tubers was calculated. Results. The L-ascorbic acid content in imported new potatoes ranged from 102.7 to 131.0 mg kg-1 and nitrate content from 22.70 to 64.74 mg N-NO3 kg-1 of the fresh weight of tubers. The L-ascorbic acid content in potatoes imported from Cyprus was similar to potatoes of the same cultivar imported from Egypt. The L-ascorbic acid content in potatoes imported from Israel was at a similar or higher level than in potatoes originating from Cyprus or Egypt. The lowest nitrate were in potatoes imported from Egypt. The nitrate content determined in potatoes imported from Cyprus was almost 2.5-times higher than for potatoes of the same cultivar imported from Egypt, whereas the nitrate contents in potatoes imported from Israel was 1.6-2-times higher than in potatoes originating from Egypt. The IAN was from 1.68 to 5.73. The IAN for the potatoes imported from Egypt was above 2.5-timeshigher than for potatoes of the same cultivar imported from Cyprus, and almost 2-times higher than for potatoes imported from Israel. Conclusion. The nitrate content in tested potato samples did not exceed the permissible content of 200 mg NO3 kg-1 of the fresh weight of tubers. The IAN value calculated for all tested potato samples was higher than 1, which indicates that new potatoes imported to Poland in the winter period from Mediterranean countries are safe for human health regarding the nitrate content.
PL
Wprowadzenie. Młode ziemniaki są importowane do Polski głównie z krajów śródziemnomorskich. W klimacie basenu Morza Śródziemnego ziemniaki można uprawiać dwa razy w roku. Różne warunki środowiska w okresie wzrostu roślin mają wpływ na jakość bulw. Cel badań. Celem badań była ocena bezpieczeństwa żywieniowego młodych ziemniaków importowanych do Polski w okresie zimowym z krajów śródziemnomorskich na podstawie indeksu askorbinowo-azotanowego. Materiał i metody. Materiał do badań stanowiły ziemniaki importowane z Cypru, Egiptu i Izraela, zakupione w Siedlcach w okresie od początku lutego do końca marca 2015 roku. Badania laboratoryjne wykonano na 54 próbkach ziemniaków. Oznaczono zawartość kwasu L-askorbinowego metodą miareczkowania za pomocą 2,6-dichlorofenolindofenolu według Tillmansa i azotanów (V) metodą spektrofotometryczną w oparciu o reakcję Griessa. Indeks askorbinowo-azotanowy (IAN) wyliczono jako stosunek ilości kwasu L-askorbinowego do ilości azotanów (V). Wyniki. Zawartość kwasu L-askorbinowego w młodych ziemniakach z importu wahała się od 102,7 do 131,0 mg kg-1, a zawartość azotanów (V) od 22,70 do 64,74 mg N-NO3 kg-1 świeżej masy bulw. Zawartość kwasu L-askorbinowego w ziemniakach importowanych z Cypru była podobna jak w ziemniakach tej samej odmiany importowanych z Egiptu. Zawartość kwasu L-askorbinowego w ziemniakach importowanych z Izraela była podobna lub wyższa niż w ziemniakach pochodzących z Cypru lub Egiptu. Najmniej azotanów (V) zawierały ziemniaki importowane z Egiptu. Zawartość azotanów (V) w ziemniakach importowanych z Cypru była prawie 2,5 raza większa niż w ziemniakach tej samej odmiany importowanych z Egiptu, natomiast zawartość azotanów (V) w ziemniakach importowanych z Izraela była 1,6-2 razy większa niż w ziemniakach pochodzących z Egiptu. IAN wynosił od 1,68 do 5,73. IAN ziemniaków importowanych z Egiptu był ponad 2,5 raza wyższy niż ziemniaków tej samej odmiany importowanych z Cypru i prawie 2 razy wyższy niż ziemniaków importowanych z Izraela. Wnioski. Zawartość azotanów (V) w badanych próbkach ziemniaków nie przekraczała dopuszczalnej zawartości 200 mg NO3 kg-1 świeżej masy bulw. Wartość IAN obliczona dla wszystkich badanych próbek ziemniaków była wyższa niż 1, co wskazuje, że młode ziemniaki importowane do Polski w okresie zimowym z krajów śródziemnomorskich są bezpieczne dla zdrowia człowieka pod względem zawartości azotanów (V).

Słowa kluczowe

Wydawca

-

Rocznik

Tom

69

Numer

3

Opis fizyczny

p.243-249,ref.

Twórcy

autor
  • Department of Vegetable Crops, Faculty of Natural Science, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
autor
  • Department of Environmental Studies and Biological Education, Faculty of Natural Science, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland

Bibliografia

  • 1. Buono V., Paradis, A., Serio F., Gonnella M., De Gara L., Santamaria P.: Tuber quality and nutritional components of “early” potato subjected to chemical haulm desiccation. J Food Compost Anal 2009;22:556-562. DOI:10.1016/j.jfca.2009.01.001
  • 2. Burgos G., Auqui S., Amoros W., Salas E., Bonierbale M.: Ascorbic acid concentration of native Andean potato varieties as affected by environment, cooking and storage. J Food Compost Anal 2009;22:533-538. DOI: 10.1016/j.jfca.2008.05.013
  • 3. Burlingame B., Mouille B., Charrondiere R.: Nutrients, bioactive non-nutrients and antinutrients in potatoes. J Food Compost Anal 2009;22:494-502. DOI: 10.1016/j.jfca.2009.09.001
  • 4. Cieślik E.: The effect of naturally occurring vitamin C in potato tubers on the levels of nitrates and nitrites. Food Chem 1994;49:233-235. DOI: 10.1016/0308-8146(94)90165-1
  • 5. Du S.T., Zhang Y.S., Lin X.Y.: Accumulation of nitrate in vegetables and its possible implications to human health. Agr Sci China 2007;6:1246-1255. DOI: 10.1016/s1671-2927(07)60169-2
  • 6. European Cultivated Potato Database. Available from: http://europotato.org (Accessed 16.01.2018)
  • 7. Ezekel R., Singh N., Sharma S., Kaur A.: Beneficial phytochemicals in potato – a review. Food Res Int 2013;50:487-496. DOI: 10.1016/j.foodres.2011.04.025
  • 8. Food and Agriculture Organization of the United Nations (FAO)/Word Health Organization (WHO). 2003. Nitrate (and potential endogenous formation of N-nitroso compounds). In: Safety evaluation of certain food additives and contaminants. Joint FAO/WHO Expert Committee on Food Additives (JECFA) WHO Food Additives Ser.50. Geneva. Available from: http:// www.inchem.org/documents/jecfa/jecmono/v50je06. htm (Accessed 18.01.2018)
  • 9. Haase N.U.: Healthy aspect of potatoes as part of the human diet. Potato Res 2008;51:239-258. DOI: 10.1007/s11540-008-9111-4
  • 10. Hamouz K., Lachman J., Dvořák P., Dušková O., Čižek M.: Effect of conditions of locality, variety and fertilization on the content of ascorbic acid in potato tubers. Plant Soil Environ 2007;53:252257.
  • 11. Hlušek J., Zrůst J., Jůzl M.: Nitrate concentration in tubers of early potatoes. Rost Vyroba 2000;46:17-21.
  • 12. Hord N.G., Tang Y., Bryan N.S.: Food sources of nitrates and nitrites: the physiologic context for potential health benefits. Am J Clin Nutr 2009;90:1-10. DOI: 10.3945/ajcn.2008.27131
  • 13. Ierna A.: Influence of harvest date on nitrate contents of three potato varieties for offseason production. J Food Compost Anal 2009;22:551-555. DOI: 10.1016/j.jfca.2008.11.007
  • 14. Ierna A.: Tuber yield and quality characteristics of potatoes for off-season crops in a Mediterranean environment. J Sci Food Agric 2010;90: 85-90. DOI: 10.1002/jsfa.3786
  • 15. Ierna A., Mauromicale G.: Physiological and growth response to moderate water deficit of off-season potatoes in a Mediterranean environment. Agric Water Manag 2006;82:193-209. DOI: 10.1016/j.agwat.2005.05.005
  • 16. Ierna A., Melilli M.G.: Ascorbic acid and total phenolic content in early potatoes as affected by growing season, genotype and harvest time. Acta Hort (ISHS) 2014;1040:133-141. DOI: 10.17660/ actahortic.2014.1040.17
  • 17. International Standard ISO 6635:1984. Fruits, vegetables and derived products – Determination of nitrite and nitrate content. Molecular absorption spectrometric method. International Organization for Standardization.
  • 18. Lachman J., Pivec V., Orsak M.: Ascorbate-nitrate index as a factor characterizing the quality of vegetables. Chem Listy 1997;91:708-709.
  • 19. Lee S.K., Kader A.A.: Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biol Technol 2000;20:207-220. DOI: 10.1016/s0925-5214(00)00133-2
  • 20. Leo L., Leone A., Longo C., Lombardi D.A., Raimo F., Zacheo G.: Antioxidant compounds and antioxidant activity in “early potatoes”. J Agric Food Chem 2008;56:4154-4163. DOI: 10.1021/jf073322w
  • 21. Lombardo S., Pandino G., Mauromicale G.: Nutritional and sensory characteristics of “early” potato cultivars under organic and conventional cultivation system. Food Chem 2012;133:1249-1254. DOI: 10.1016/j.foodchem.2011.10.005
  • 22. Love S.L., Pavek J.J.: Positioning the potato as a primary food source of vitamin C. Am J Potato Res 2008;85:277-285. DOI: 10.1007/s12230-008-9030-6
  • 23. Matin J., Zee J.A., Levallois P., Desrosiers T., Ayotte P., Poirier G., Pratte L.: Consumption of potatoes and their contribution to dietary nitrate and nitrite intakes. Sci Aliment 1998;18:163-173.
  • 24. Mazurczyk W., Lis B.: Variation of chemical composition of tubers of potato table cultivars grown under deficit and excess of water. Pol J Food Nutr Sci 2001;10/51:27-30.
  • 25. Mazurczyk W., Lis B.: Relationships between vitamin C and nitrate content in potato tubers. Biul IHAR 2004;232:47-52 (in Polish).
  • 26. Mirvish S.S.: Experimental evidence for inhibition of N-nitroso compound formation as a factor in the negative correlation between vitamin C consumption and the incidence of certain cancers. Cancer Res 1994;54 Suppl.:1948-1951.
  • 27. Mozolewski W., Smoczyński S.: Effect of culinary processes on the content on nitrates and nitrites in potato. Pakistan J Nutr 2004;3:357-361. DOI: 10.3923/pjn.2004.357.361
  • 28. Navarre D.A., Shakya R., Holden J., Kumar S.: The effect of different cooking methods on phenolics and vitamin C in developmentally young potato tubers. Am J Poato Res 2010;87:350-359. DOI: 10.1007/s12230-010-9141-8
  • 29. Opinion of the Scientific Panel on Contaminants in the Food chain on a request from the European Commision to perform a scientific risk assessment on nitrate in vegetables. EFSA J 2008;689:1-79. DOI: 10.2903/j.efsa.2008.689
  • 30. Pokluda R.: An assessment of the nutritional value of vegetables using an ascorbate-nitrate index. Veget Crops Res Bull 2006;64:29-37.
  • 31. Polish Standard PN-A-04019:1998: Food products – Determination of vitamin C content. Polish Committee for Standardization, Warsaw, Poland (in Polish).
  • 32. Rogozińska I., Pawelzik E., Pobereżny J., Delgado E.: The effect of different factors on the content of nitrate on some potato varieties. Potato Res 2005;48:167-180. DOI: 10.1007/bf02742374
  • 33. Rooma Ml., Kann E.M.: Ascorbate index – an indicator of the level of ascorbic acid and nitrates in plant products. Vopr Pitan 1993;4:54-56.
  • 34. Santamaria P.: Nitrate in vegetables: toxicity, content, intake and EC regulation (Review). J Sci Food Agric 2006;86:10-17. DOI: 10.1002/jsfa.2351
  • 35. Tannenbaum S.R., Wishnok J.S., Leaf C.D.: Inhibition of nitrosamine formation by ascorbic acid. Am J Clin Nutr 1991:53:247-250.
  • 36. Tedone L., Hancock R.D., Alberino S., Haupt S., Viola R.: Long-distance transport of L-ascorbic acid in potato. BMC Plant Biol 2004;4:16.
  • 37. Umar A.S., Iqbal M.: Nitrate accumulation in plants, factors affecting the process, and human health implications. Agron Sustain Dev 2007;27:45-57. DOI: 10.1051/agro:2006021
  • 38. UNECE Standard FFV-52. Early and ware potatoes. New York, Geneva: United Nations 2011. Available This article is available in Open Access model and licensed under a Creative Commons Attribution-Non Commercial 3.0.Poland License (CC-BY-NC) available at: http://creativecommons.org/licenses/by-nc/3.0/pl/deed.en from: http://www.unece.org/trade/agr/standard/fresh/ffvstandardse. html (Accessed 16.01.2018)
  • 39. Valcarcel J., Reilly K., Gaffney M., O’Brien N.: Total carotenoids and L-ascorbic acid content in 60 varieties of potato (Solanum tuberosum L.) grown in Ireland. Potato Res 2015;58:29-41. DOI: 10.1007/s11540-014-9270-4
  • 40. Wadas W., Jabłońska-Ceglarek R., Kosterna E.: The nitrates content in early potato tubers depending on growing conditions. Electr J Pol Agric Univ, Horticulture 2005;8. Available from: http://www.ejpau.media.pl/volume8/issue1/art-26.html (Accessed 16.01.2018).

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-12bee472-b201-4f20-981e-1338b61646cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.