PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 583 |
Tytuł artykułu

Charakterystyka, właściwości oraz znaczenie biotechnologiczne esteraz bakteryjnych

Treść / Zawartość
Warianty tytułu
EN
Property characteristics and biotechnological significance of bacterial esterases
Języki publikacji
PL
Abstrakty
PL
Na podstawie informacji literaturowych zaprezentowano aktualną wiedzę o właściwościach biokatalitycznych esteraz bakteryjnych oraz metodach ich modyfikacji. Uwzględniając informacje o specyficznej aktywności esteraz, opisano różnice między nimi a lipazami. Zwrócono uwagę na ich specyfikę substratową oraz na uwarunkowania związane ze środowiskiem reakcji ze szczególnym uwzględnieniem zawartości wody. Przedstawiono również przykłady potwierdzające znaczenie biotechnologiczne esteraz w kształtowaniu cech smakowo-zapachowych serów, wina, a także w produkcji niektórych składników żywności, farmaceutyków lub kosmetyków. Wskazano na współczesne możliwości doskonalenia cech genetycznych bakterii w kierunku poprawy wydajności syntezy esteraz oraz ich specyficzności ważnej w praktyce.
Esterases represent a diverse group of hydrolases catalyzing the cleavage and formation of ester bonds. They are widely distributed in animals, plants and microorganisms. Beside lipases, a considerable number ofmicrobial esterases have also been discovered and overexpressed. Comparisons between esterases and lipases reveal remarkable sequence similarities, despite radically different substrate specificities and physiological functions. Esterase can perform ester hydrolysis and substrate transesterfication reactions. They prefer water-soluble substrates and can only hydrolyze triglycerides composed of short-chain fatty acids. Esterases display high regio- and stereo-specificity, require no co-factors and are usually stable and active in organic solvents. These make them attractive in important industrial and medical applications in the production of optically-pure compounds in fine chemical synthesis, including the metabolic processing of drugs and antimicrobial agents. Esterases originate from mesophilic bacteria as well as from cold-adapted or thermostable organisms. This paper focuses on the considerable amount of research directed at defining the accumulation of esters during fermentation and their contribution to aromas in foods and beverages. From this research, it is obvious that esters are extremely important for the aroma profile of fermented beverages and various dairy products. Based on the available information and a literature search, it is also clear that lactic acid bacteria in fermented beverage and dairy products possess an extensive collection of ester-synthesizing and hydrolyzing activities. This review also presents the major esters reported in wine and cheese and the enzymes responsible for their hydrolysis and synthesis. Ester impact on fermented product aroma and formation during primary and malolactic fermentation was also evaluated. Moreover, the potential applications of current knowledge of esterases are also described. Attention is also paid to the possibility of improving the genetic characteristics of bacteria to improve the synthesis efficiency and specificity of important esterase enzymes. Metabolic engineering is expected to have a significant impact on ester biosynthesis by microorganisms. Genetic engineering offers the potential for further control of wine/cheese aroma, including inactivation or over-expression of esterase and alcohol acetyltransferase genes. As an interesting alternative, GRAS/food-grade expression systems or directed evolution, which are more acceptable for use in food products, are also mentioned.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
583
Opis fizyczny
s.85-96,bibliogr.
Twórcy
  • Katedra Biotechnologii Żywności, Uniwersytet Warmińsko-Mazurski w Olsztynie, Plac Cieszyński 1, 10-726 Olsztyn
autor
  • Uniwersytet Warmińsko-Mazurski w Olsztynie
autor
  • Uniwersytet Warmińsko-Mazurski w Olsztynie
autor
  • Uniwersytet Warmińsko-Mazurski w Olsztynie
Bibliografia
  • Alonso R., Picon A., Rodriguez B., Gaya P., Fernández-Garcia E., Nuńez M., 2011. Microbiological, chemical, and sensory characteristics of Hispánico cheese manufactured using frozen high pressure treated curds made from raw ovine milk. Int. Dairy J. 21, 484-492.
  • Alvarez-Macarie E., Baratti J., 2000. Short chain flavor ester synthesis by a new esterase from Bacillus licheniformis. J. Mol. Catal. B Enzym. 10, 377-383.
  • Ávila M., Calzada J., Garde S., Nuńez M., 2007. Effect of a bacteriocin-producing Lactococcus lactis strain and high-pressure treatment on the esterase activity and free fatty acids in Hispánico cheese. Int. Dairy J. 17, 1415-1423.
  • Bartowsky E., Borneman A., 2011. Genomic variations of Oenococcus oeni strains and the potential to impact on malolactic fermentation and aroma compounds in wine. Appl. Microbiol. Biotechnol. 92, 441-447.
  • Bornscheuer U.T., 2002. Microbial carboxyl esterases: classification, properties and applications in biocatalysis. FEMS Microbiol. Rev. 26, 73-81.
  • Calzada J., Olmo A., Picon A., Nuńez M., 2014. Effect of high-pressure-processing on lipolysis and volatile compounds of Brie cheese during ripening and refrigerated storage. Int. Dairy J. 39, 232-239.
  • Collins Y.F., McSweeney P.L.H., Wilkinson M.G., 2003. Lipolysis and free fatty acid catabolism in cheese: a review of current knowledge. Int. Dairy J. 13, 841-866.
  • Dragosits M., Mattanovich D., 2013. Adaptive laboratory evolution-principles and applications for biotechnology. Microb. Cell Fact. 12, 64.
  • Esteban-Torres M., Santamaría L., de las Rivas B., Muńoz R., 2014a. Characterization of a cold-active and salt-tolerant esterase from Lactobacillus plantarum with potential application during cheese ripening. Int. Dairy J. 39, 312-315.
  • Esteban-Torres M., Mancheńo J.M., de las Rivas B., Muoz R., 2014b. Production and characterization of a tributyrin esterase from Lactobacillus plantarum suitable for cheese lipolysis. J. Dairy Sci. 97, 6737-6744.
  • Fazary A.E., Ju Y.H., 2007. Feruloyl esterases as biotechnological tools: current and future perspectives. Acta Biochim. Biophys. Sin. (Shanghai) 39(11), 811-828.
  • Holland R., Liu S.Q., Crow L.V.L., Delabre M.L., Lubbers M., Bennet M., Norris G., 2005. Esterases of lactic acid bacteria and cheese flavor: milk fat hydrolysis, alcoholysis and esteri-fication. Int. Dairy J. 15, 711-718.
  • Kashima Y., Iijima M., Nakano T., Tayama K., Koizumi Y., Udaka S., Yanagida F., 2000. Role of intracellular esterases in the production of esters by Acetobacter pasteurianus. J. Biosci. Bioeng. 89, 81-83.
  • Kaur B., Chakraborty D., Kaur G., Kaur G., 2013. Biotransformation of rice bran to ferulic acid by pediococcal isolates. Appl. Biochem. Biotechnol. 170, 854-867.
  • Khalameyzer V., Fischer J., Bornscheuer U.T., Altenbuchner J., 1999. Screening, nucleotide sequence and biochemical characterization of an esterase from Pseudomonas fluorescens with high activity towards lactones. Appl. Environ. Microbiol., 65, 477-482.
  • Knoll C., Fritsch S. Schnell S., Grossmann M., Rauhut D., du Toit M., 2011. Influence of pH and ethanol on malolactic fermentation and volatile aroma compound composition in white wines. LWT - Food Sci. Technol. 44, 2077-2086.
  • Krebsfänger N., Zocher F., Altenbuchner J., Bornscheuer U.T., 1998. Characterization and enan-tioselectivity of a recombinant esterase from Pseudomonas fluorescens. Enzyme Microb. Technol. 22, 641-646.
  • Lee J.H., Hwang E.T., Kim B.C., Lee S.-M., Sang B.-I., Choi Y.-S., Kim J., Gu M.B., 2007. Stable and continuous long-term enzymatic reaction using an enzyme-nanofiber composite. Appl. Microbiol. Biotechnol. 75, 1301-1307.
  • Lerm E., Engelbrecht L., du Toit M., 2011. Selection and characterization of Oenococcus oeni and Lactobacillus plantarum South African wine isolates for use as malolactic fermentation starter cultures. S. Afric. J. Enol. Vitic. 32, 280-295.
  • Liu S.-Q., Holland R., Crow V.L., 2004a. Esters and their biosynthesis in fermented dairy products: a review. Int. Dairy J. 14, 923-945.
  • Liu S.-Q., Baker K., Bennett M., Holland R., Norris G., Crow V.L., 2004b. Characterization of esterases of Streptococcus thermophilus ST1 and Lactococcus lactis subsp. cremoris B1079 as alcohol acyltransferases. Int. Dairy J. 14, 865-870.
  • Liu J.-Y., Bian H.-P., Tang Y., Bai Y.-P., Xu J.-H., 2015. Double substituted variant of Bacillus amyloliquefaciens esterase with enhanced enantioselectivity and high activity towards 1-(3',4'-methylenedioxyphenyl)ethyl acetate. Appl. Microbiol. Biotechnol. 99, 1701-1708.
  • Ma J., Wu L., Guo F., Gu J., Tang X., Jiang L., Liu J., Zhou J., Yu H., 2013. Enhanced enantioselec-tivity of a carboxyl esterase from Rhodobacter sphaeroides by directed evolution. Appl. Microbiol. Biotechnol. 97, 4897-4906.
  • Maqbool Q.A., Johri S., Verma L., Riyaz-ul-Hassan S., Verma V., Koul S., Taneja S.C., Parshad R., Qazi G.N., 2002. Purification and characterization of a novel enantioselective hydrolase from Bacillus subtilis. Biotechnol. Appl. Biochem. 36 (Pt 3), 227-234.
  • McClendon S.D., Shin H-D., Chen R.R., 2011. Novel bacterial ferulic acid esterase from Cellvibrio japonicus and its application in ferulic acid release and xylan hydrolysis. Biotechnol. Lett. 33, 47-54.
  • Malherbe S., Tredoux A., Nieuwoudt H., du Toit M., 2012. Comparative metabolic profiling to investigate the contribution of O. oeni MLF starter cultures to red wine composition. J. Ind. Microbiol. Biotechnol. 39, 477-494.
  • Marilley L., Casey M.G., 2004. Flavours of cheese products: metabolic pathways, analytical tools and identification of producing strains. Int. J. Food Microbiol. 90, 139-159.
  • Matthews A., Grbin M.A., Jiranek V., 2007. Biochemical characterisation of the esterase activities of wine lactic acid bacteria. Appl. Microbiol. Biotechnol. 77(2), 329-337.
  • Mikš-Krajnik M.H., 2012. Rola paciorkowców mlekowych i pałeczek propionowych w procesie dojrzewania sera typu szwajcarsko-holenderskiego. ŻNTJ 1(80), 45-59.
  • Mukdsi M.C.A., Medina R.B., de F. Alvarez M., González S.N., 2009. Ester synthesis by lactic acid bacteria isolated from goat's and ewe's milk and cheeses. Food Chem. 117, 241-247.
  • Mukdsi M.C.A., Falentin H., Maillard M.B., Chuat V., Medina R.B., Parayre S., Thierry A., 2014.
  • The Secreted Esterase of Propionibacterium freudenreichii has a major role in cheese lipolysis. Appl. Environ. Microbiol. 80, 751-756.
  • Oliszewski, R., Medina R. B., Gonzalez S. N., Perez Chaia A.B., 2007. Esterase activities of indigenous lactic acid bacteria from argentinean goats' milk and cheeses. Food Chem. 101, 1446-1450.
  • Pedersen T.B., Ristagno D., McSweeney P.L.H., Vogensen F.K., Ardöa Y., 2013. Potential impact on cheese flavour of heterofermentative bacteria from starter cultures. Int. Dairy J. 33, 112-119.
  • Pérez-Martín F., Seseńa S, Izquierdo P.M., Palop M.L., 2013. Esterase activity of lactic acid bacteria isolated from malolactic fermentation of red wines. Int. J. Food Microbiol. 163, 153-158.
  • Peterbauer C., Maischberger T., Haltrich D., 2011. Food-grade gene expression in lactic acid bacteria. Biotechnol. J. 6, 1147-1161.
  • Richoux R., Maillard M.B., Kerjean J.R., Lortal S., Thierry A., 2008. Enhancement of ethyl ester and flavour formation in Swiss cheese by ethanol addition. Int. Dairy J. 18, 1140-1145.
  • Shin H.D., Chen R.R., 2006. Production and characterization of a type B feruloyl esterase from Fusarium proliferatum NRRL 26517. Enzyme Microb. Technol. 38, 478-485.
  • Sumby K.M., Matthews A.M., Grbin P.R., Jiranek V., 2009. Cloning and characterization of an intracellular esterase from the wine-associated lactic acid bacterium Oenococcus oeni. Appl. Environ. Microbiol. 75, 6729-6735.
  • Sumby K.M., Grbin P.R., Jiranek V., 2010. Microbial modulation of aromatic esters in wine. Current knowledge and future prospects. Food Chem. 121, 1-16.
  • Sumby K.M., Grbin P.R., Jiranek V., 2012a. Characterization of EstCOo8 and EstC34, intracellular esterases, from the wine associated lactic acid bacterium Oenococcus oeni and Lactoba-cillus hilgardii. J. Appl. Microbiol. 114, 413-422.
  • Sumby K.M., Grbin P.R., Jiranek V., 2012b. Validation of the use of multiple internal control genes, and the application of real-time quantitative PCR, to study esterase gene expression in Oenococcus oeni. Appl. Microbiol. Biotechnol. 96, 1039-1047.
  • Sumby K.M., Grbin P.R., Jiranek V., 2013. Ester synthesis and hydrolysis in an aqueous environment, and strain specific changes during malolactic fermentation in wine with Oenococ-cus oeni. Food. Chem. 141, 1673-1680.
  • Sumby K.M., Grbin P.R., Jiranek V., 2014. Implications of new research and technologies for ma-lolactic fermentation in wine. Appl. Microbiol. Biotechnol. 98, 8111-8132.
  • Taboada N.V., López Alzogaray M.S., Mukdsi M.C.A., Medina R.B., 2014. Esterase activities and biochemical properties of lactic acid bacteria isolated from goat's milk cheese in Argentina. J. Agric. Sci. Technol. B 4, 752-760.
  • Torres S., Martinez M.A., Pandey A., Castro G.R., 2009a. An organic-solvent-tolerant esterase from thermophilic Bacillus licheniformis S-86. Bioresour. Technol. 100, 896-902.
  • Torres S., Baigori M.D., Swathy S.L., Pandey A., Castro G.R., 2009b. Enzymatic synthesis of banana flavour (isoamyl acetate) by Bacillus licheniformis S-86 esterase. Food Res. Int. 42, 454-460.
  • Uraji M., Kimura M., Inoue Y., Kawakami K., Kumagai Y., Harazono K., Hatanaka T., 2013. Enzymatic production of ferulic acid from defatted rice bran by using a combination of bacterial enzymes. Appl. Biochem. Biotechnol. 171, 1085-1093.
  • Wu C., Huang J., Zhou R., 2014. Progress in engineering acid stress resistance of lactic acid bacteria. Appl. Microbiol. Biotechnol. 98, 1055-1063.
  • Yoon S., Kim S., Park S., Hong E., Kim J., Kim S., Yoo T.-H., Ryu Y., 2014. Improving the enan-tioselectivity of an esterase toward (S)-ketoprofenethyl ester through protein engineering. J. Mol. Catal. B Enzym. 100, 25-31.
  • Zhu Y., Li J., Cai H., Ni H., Xiao A., Hou L., 2013. Characterization of a new and thermostable esterase from a metagenomic library. Microbiol. Res. 168, 589-597.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-129a4c34-4a33-442c-b238-6c39558743d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.