Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 64 | 3 |

Tytuł artykułu

Effectiveness and applications of hair traps for the study of wild mammal populations

Warianty tytułu

Języki publikacji



Direct studies of wild mammals are challenging due to the difficulty for capturing and handling and the associated high costs. Thus, noninvasive hair trapping for surveying mammal populations has been widely used in wildlife ecology and management. However, the efficiency of this method may differ depending on the animal species and other different factors. Here we aimed at evaluating the potential of hair tube traps for reliable detecting mammal species as well as to assess whether type of habitat, baits, hair trap´s size variables (length, diameter and time staying active) and position variables (height, altitude, orientation and location) influenced trapping success (i.e. obtaining hair samples or not) and effectiveness (i.e. percentage of successful sampling traps and the number of species detected) of hair traps. Hair traps were done with PVC tubes with adhesive tape inside, and they were placed at different locations where mammal cues were previously detected. Collected hairs were identified to species by macro and microscopic characteristics. We collected hairs in the 82% of the hair traps placed and we detected 9 species which represented 64% of the wild mammals potentially detectable with this method in the study areas. No one of the studied variables explained trapping success. However, trap´s diameter significantly influenced effectiveness, but contrary to expected, the larger traps presented lower sampling success and less species were registered. Position variables did not influence effectiveness of hair traps. Sampling success due to baits used was related to diet preferences of the species. Further, trap´s diameter and length, height, inclination and altitude influenced collecting hair samples from the different animal taxonomic orders. These results suggest that hair trapping can be used as a good tool for the study of wild mammals, but assumptions related to trap size and position variables should be taken into account to increase the effectiveness of this method.








Opis fizyczny



  • Department of Biology (Zoology), Autonoma University of Madrid, C/Darwin 2, 28049 Madrid, Spain
  • Department of Biology (Zoology), Autonoma University of Madrid, C/Darwin 2, 28049 Madrid, Spain
  • Department of Biology (Zoology), Autonoma University of Madrid, C/Darwin 2, 28049 Madrid, Spain


  • Anwar M.B., Nadeem M.S., Beg M.A., Kayani A.R., Ghulam M. 2012 — A photographic key for the identification of mammalian hairs of prey species in snow leopard (Panthera uncia) habitats of Gilgit-Baltistan province of Pakistan — Pakistan J. Zool. 44: 737–743.
  • Apps C.D., McLellan B.N., Woods J.G., Proctor M.F. 2004 — Estimating grizzly bear distribution and abundance relative to habitat and human influence — J. Wildl. Manage. 68: 138–152.
  • Bechshøft T.Ø., Sonne C., Dietz R., Born E.W., Novak M.A., Henchev E., Meyer J.S. 2011 — Cortisol levels in hair of East Greenland polar bears — Sci. Total. Environ. 409: 831–834.
  • Boersen M.R., Clark J.D., King T.L. 2003 — Estimating black bear population density and genetic diversity at Tensas River, Louisiana using microsatellite DNA markers — Wildl. Soc. B. 31: 197–207.
  • Boitani L., Powell R.A. 2012 — Carnivore ecology and conservation: a handbook of techniques — Oxford University Press, New York, 508 pp.
  • Castro-Arellano I., Madrid-Lina C., Lacher T.E., León-Paniagua L. 2008 — Hair-traps efficacy for detecting mammalian carnivores in the tropics — J. Wildl. Manage. 72: 1405–1412.
  • Chakraborty R., De J.K., Chakraborty S. 1996 — Identification of dorsal guard hair of Indian species of the genus Panthera Oken (Carnivora: Felidae) — Mammalia, 60: 473–480.
  • De Barba M., Waits L.P., Genovesi P., Randi E., Chirichella R., Cetto E. 2010 — Comparing opportunistic and systematic sampling methods for non-invasive genetic monitoring of a small translocated brown bear population — J. Appl. Ecol. 47: 172–181.
  • De Marinis A., Asprea A. 2006 — Hair identification key of wild and domestic ungulates from southern Europe — Wildl. Biol. 12: 305–320.
  • Downey P.J., Hellgren E.C., Caso A., Carvajal S., Frangioso K. 2007 — Hair snares for noninvasive sampling of felids in North America: do gray foxes affect success? — J. Wildl. Manage. 71: 2090–2094.
  • Ebert C., Huckschlag D., Schulz H.K., Hohmann U. 2010 — Can hair traps sample wild boar (Sus scrofa) randomly for the purpose of non-invasive population estimation? — Eur. J. Wildl. Res. 56: 583–590.
  • Faliu L., Lignereux Y., Barrat J. 1980 — Identificación de pelos de mamíferos pirenaicos — Doñana Acta Vertebrata, 7: 125–212 (in Spanish, English summary).
  • Fasola L., Bello M., Guichón M.L. 2005 — Uso de trampas de pelo y caracterización de los pelos de ardilla de vientre rojo Calloscirius erythraeus — Mastozoología Neotropical, 12: 9–17 (in Spanish, English summary).
  • Frantz A.C., Schaul M., Pope L.C., Fack F., Schley L., Muller C.P., Roper T.J. 2004 — Estimating population size by genotyping remotely plucked hair: the Eurasian badger — J. Appl. Ecol. 41: 985–995.
  • García P., Mateos I. 2009 — Evaluation of three indirect methods for surveying the distribution of the least weasel Mustela nivalis in a Mediterranean area — Small Carnivore Conservation, 40: 22–26.
  • Gómez J.J., Cassini M.H. 2010 — Uso de pelos de guardia para la identificación de mustélidos costeros en la Patagonia — Biología Marina y Oceanografía Nota Científica, 45: 365–370 (in Spanish, English summary).
  • Gurnell J., Lurz P.P.W., McDonal R., Pepper H. 2009 — Practical techniques for surveying and monitoring squirrels — Forestry Commission Practice Note 11, Forestry Commission, Edinburgh, 12 pp.
  • Gurnell J., Lurz P.W.W., Shirely M.D.F., Cartmel S., Garson P.J., Magris L., Steele J. 2004 — Monitoring red squirrels Sciurus vulgaris and grey squirrels Sciurus carolinensis in Britain. Mamm. Rev. 34: 51–74.
  • Jones C., McShea W.J., Conroy M.J., Kunz T.H. 1996 — Capturing mammals (In: Measuring and monitoring biological diversity: standard methods for mammals, Eds: D.E. Wilson, F.R. Cole, J.D. Nichols, R. Rudran, M.S. Foster) — Smithsonian Institution, Washington, D.C., USA, pp. 115–155.
  • Junqueira L.C., Carneiro J. 2000 — Histología básica: texto y atlas — Masson, Barcelona, 489 pp. (in Spanish).
  • Long R.A., Mackay P., Zielinski J., Ray J.C. 2008 — Noninvasive survey methods for carnivores — Island Press, Washington, 400 pp.
  • Lynch Á.B., Brown M.J.F., Rochford J.M. 2006 — Fur snagging as a method of evaluating the presence and abundance of a small carnivore, the pine marten (Martes martes) — J. Zool. 270: 330–339.
  • McDaniel G.W., McKelvey K.S., Squires J.R., Ruggiero L.F. 2000 — Efficacy of lures and hair snares to detect lynx — Wildl. Soc. Bull. 28: 119–123.
  • Menike U., Manawadu D., Meegaskumbura S. 2012 — Identification of Sri Lankan shrews using hair anatomy — Ceylon J. Sci. 41: 45–66.
  • Miura S., Oka T. 2003 — Evaluation of apple bait hair-traps for genetic tagging of Asian black bears in the Kitakami Highland, northern Honshu, Japan — Mamm. Stud. 28: 149–152.
  • Monterroso P., Rich L.N., Serronha A., Ferreras P., Alves P.C. 2014 — Efficiency of hair snares and camera traps to survey mesocarnivore populations — Eur. J. Wildl. Res. 60: 279–289.
  • Morell V. 1995 — Dogfight erupts over animal studies in the Serengeti — Science, 270: 1302–1303.
  • Morin P.A., Wallis J., Moore J.J., Woodruff D.S. 1994 — Paternity exclusion in a community of wild chimpanzees using hypervariable simple sequence repeats — Mol. Ecol. 3: 469–478.
  • Mowat G., Paetkau D. 2002 — Estimating marten Martes americana population size using hair capture and genetic tagging — Wildl. Biol. 8: 201–209.
  • Mowat G., Strobeck C. 2000 — Estimating population size of grizzly bears using hair capture, DNA profiling, and mark—recapture analysis — J. Wildl. Manage. 64: 183–193.
  • Navarro-Castilla A., Barja I. 2014a —. Antipredatory response and food intake in wood mice (Apodemus sylvaticus) under simulated predation risk by resident and novel carnivorous predators — Ethology, 120: 90–98.
  • Navarro-Castilla A., Barja I. 2014b — Does predation risk, through moon phase and predator cues, modulate food intake, antipredatory and physiological responses in wood mice (Apodemus sylvaticus)? — Behav. Ecol. Sociobiol. 68: 1505–1512.
  • Obbard M.E., Howe E.J., Kyle C.J. 2010 — Empirical comparison of density estimators for large carnivores — J. Appl. Ecol. 47: 76–84.
  • Oli M.K. 1993 — A key for the identification of the hair of mammals of a snow leopard (Panthera uncia) habitat in Nepal — J. Zool. 231: 71–93.
  • Orrock J.L., Danielson B.J., Brinkerhoff R.J. 2004 — Rodent foraging is affected by indirect, but not by direct, cues of predation risk — Behav. Ecol. 15: 433–437.
  • Pauli J.N., Hamilton M.B., Crain E.B., Buskirk S.W. 2008 — A single-sampling hair trap for Mesocarnivores — J. Wildl. Manage. 72: 1650–1652.
  • Sanecki G.M., Green K. 2005 — A technique for using hair tubes beneath the snowpack to detect winter-active small mammals in the subnivean space — Eur. J. Wildl. Res. 51: 41–47.
  • Schmidt K., Kowalczyk R. 2006 — Using scent-marking stations to collect hair samples to monitor Eurasian lynx populations — Wildl. Soc. Bull. 34: 462–466.
  • Simchareon S., Pattanavibool A., Karanth K.U., Nichols J.D., Kumar N.S. 2007 — How many tigers (Panthera tigris) are there in Huai Kha Khaeng wildlife sanctuary, Thailand? An estimate using photographic capture—recapture sampling — Oryx, 41: 1–7.
  • Sloane M.A., Sunnucks P., Alpers D., Beheregaray L.B., Taylor A.C. 2000 — Highly reliable genetic identification of individual northern hairy-nosed wombats from single remotely collected hairs: a feasible censusing method — Mol. Ecol. 9: 1233–1240.
  • Sokal R.R., Rohlf F.J. 2012 — Biometry: the principles and practice of statistics in biological research 4th edition — W.H. Freeman and Co., New York, 937 pp.
  • Suckling G.C. 1978 — A hair sampling tube for the detection of small mammals in trees — Aust. Wildl. Res. 5: 249–252.
  • Teerink B.J. 1991 — Hair of west-European mammals. Atlas and identification key — Cambridge University Press, Cambridge, 223 pp.
  • Terwissen C.V., Mastromonaco G.F., Murray D.L. 2013 — Influence of adrenocorticotrophin hormone challenge and external factors (age, sex, and body region) on hair cortisol concentration in Canada lynx (Lynx canadensis) — Gen. Comp. Endocrinol. 194: 162–167.
  • Vázquez D.E., Perovic P.G., De Olsen A.A. 2000 — Patrones cuticulares y medulares de pelos de mamíferos del noroeste argentino (Carnivora y Artiodactyla) — J. Neotrop. Mamm. 7: 131–147 (in Spanish, English summary).
  • Vine S.J., Crowther M.S., Lapidge S.J., Dickman C.R. Mooney N., Piggot M.P., English A.W. 2009 — Comparison of methods to detect rare and cryptic species: a case study using the red fox (Vulpes vulpes) — Wildl. Res. 36: 436–446.

Typ dokumentu


Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.