Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników


2018 | 79 |

Tytuł artykułu

Interpreting the effect of regional climate fluctuations on Quercus robur L. trees under a temperate continental climate (southern Romania)


Treść / Zawartość

Warianty tytułu

Języki publikacji



To determine oak tree sensitivity to climate fluctuations as a precipitation predictor, we eliminated monthly climate data and computed the growth-precipitation correlation using mean daily values calculated in time intervals. Precipitation from March through May is the primary limiting factor in intra-annual tree-ring growth for Quercus robur L. in southern Romania. Bootstrap correlations between the residual series and monthly average precipitation showed a positive dependence (r = 0.4). Using CLIMTREG software and daily climate data, we obtained correlation values of (0.6) and a better understanding of on-going tree radial growth. We found that the oak growth process is active during two distinct periods in the study area, December 22th–February 10th (earlywood) and March 04th–June 13th (latewood). For the studied oak tree population, the correlation with climate was positive with respect to precipitation and negative with respect to temperature. This indicates that annual tree-ring formation was influenced by the precipitation regime and frequency and by the degree of drought. These results also indicate that different behaviours occur among the examined earlywood and latewood under the same climatic conditions, which were then analysed.

Słowa kluczowe







Opis fizyczny




  • Battipaglia G, De Micco V, Brand WA, Linke P, Aronne G, Saurer M & Cherubini P (2010) Variations of vessel diameter and δ13C in false rings of Arbutus unedo L. reflect different environmental conditions. New Phytologist 188: 1099–1112.
  • Beck W, Sanders T & Pofahl U (2013) CLIMTREG: detecting temporal changes in climate growth reactions – a computer program using intra-annual daily and yearly moving time intervals of variable width. Dendrochronologia 31: 232–241.
  • Becker M, Nieminen TM & Gérémia F (1994) Short-term variations and long-term changes in oak productivity in northeastern France. The role of climate and atmospheric CO2. Annals of Forest Science 51: 477–492.
  • Biondi F & Waikul K (2004) DENDROCLIM 2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies. Computers & Geosciences 30: 303–311.
  • Briffa K & Jones PD (1990) Basic chronology statistics and assessment: Methods of Dendrochronology: Applications in the Environmental Sciences (ed. by ER Cook & LA Kairiukstis) Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 137–152.
  • Buras A (2017) A comment on the expressed population signal. Dendrochronologia 44: 130–132.
  • Cook ER & Holmes RL (1986) Users manual for program ARSTAN. Laboratory of Tree-Ring Research. University of Arizona, Tucson, USA.
  • Cook ER, Briffa KR, Shiyatov S, Mazepa V & Jones PD (1990) Data analysis: Methods of dendrochronology: applications in the environmental sciences (ed. By ER Cook & LA Kairiukstis) Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 97–162.
  • Cooper RJ, Melvin TM, Tyers I, Wilson RJS & Briffa KR (2013) A tree-ring reconstruction of East Anglian hydroclimate variability over the last millennium. Climate Dynamics 40: 1019–1039. doi:10.1007/s00382-01201328-x.
  • Cropper JP (1979) Tree-ring skeleton plotting by computer. Tree Ring Bulletin 39: 47–60.
  • Čufar K, de Luis M, Eckstein D & Kajfez-Bogataj L (2008a) Reconstructing dry and wet summers in SE Slovenia from oak tree-ring series. International Journal of Biometeorology 52: 607–615. doi:10.1007/s00484-008-0153-8.
  • Čufar K, de Luis M, Eckstein D & Kajfez-Bogataj L (2008b) A 548-years long tree-ring chronology of oak (Quercus spp.) for SE Slovenia and its significance as dating tool and climate archive. Tree Ring Research 64: 3–15.
  • Čufar K, Grabner M, Morgós A, Martínez del Castillo E, Merela M & de Luis M (2014) Common climatic signals affecting oak tree-ring growth in SE Central Europe. Trees 28: 1267–1277. doi:10.1007/s00468-013-0972-z.
  • Dobrovolný P, Rybníček M, Kolář T, Brázdil R, Trnka M & Büntgen U (2015) A tree-ring perspective on temporal changes in the frequency and intensity of hydroclimatic extremes in the territory of the Czech Republic since 761 AD. Climate of the Past 11: 1453–1466. doi:org/10.5194/cp-11-1453–2015.
  • Dumitrescu A & Birsan MV (2015) ROCADA: a gridded daily climatic dataset over Romania (1961–2013) for nine meteorological variables. Natural Hazards 78: 1045–1063.
  • Fonti P, von Arx G, Garcia-González I, Eilmann B, Sass-Klaassen U, Gärtner H & Eckstein D
  • (2010) Studying global change through investigation of the plastic responses of xylem
  • anatomy in tree rings. New Phytologist 185: 42–53.
  • Friedrichs D, Büntgen U, Frank D, Esper J, Neuwirth B & Löffler J (2008) Complex climate controls on the 20th century oak growth in Central-West Germany. Tree Physiology 29: 39–51.
  • Fritts HC (1976) Tree rings and climate. Academic Press Ltd., London, Great Britain.
  • Garcia-González IG & Eckstein D (2003) Climatic signal of earlywood vessels of oak on a maritime site. Tree Physiology 23: 497–504.
  • García-Suárez AM, Butler CJ & Baillie MGL (2009) Climate signal in tree-ring chronologies in a temperate climate: a multi-species approach. Dendrochronologia 27: 183–198. doi:10.1016/j.den dro.2009.05.003.
  • Gentilesca T, Camarero JJ, Colangelo M, Nolè A & Ripullone F (2017) Drought induced oak decline in the western Mediterranean region: an overview on current evidences, mechanisms and management options to improve forest resilience. iForest 10: 796–806. doi:10.3832/ifor2317-010.
  • Haneca K, Čufar K & Beeckman H (2009) Oaks, tree-rings and wooden cultural heritage: a review of the main characteristics and applications of oak dendrochronology in Europe. Journal of Archaeological Science 36: 1–11.
  • Harris I, Jones PD, Osborn TJ & Lister DH (2014) Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. International Journal of Climatology 34: 623–642, doi:10.1002/joc.3711.
  • Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree Rings Bulletin 43: 69–78.
  • Kern Z, Németh A, Gulyás MH, Popa I, Levanič T & Hatvani IG (2016) Natural proxy records of temperature and hydroclimate variability with annual resolution from the Northern Balkan-Carpathian region for the past millennium – Review & recalibration. Quaternary International 45: 109–125.
  • Kern Z, Patkó M, Kázmér M, Fekete J, Kele S & Pályi Z (2013) Multiple tree-ring proxies (earlywood width, latewood width and δ13C) from pedunculate oak (Quercus robur L.), Hungary. Quaternary International 293: 257–267.
  • Kolář T, Kyncl T & Rybníček M (2012) Oak chronology development in the Czech Republic and its teleconnection on a European scale. Dendrochronologia 30: 243–248. doi:10.1016/j.dendro. 2012.02.002.
  • Lebourgeois F, Cousseau G & Ducos Y (2004) Climate-tree-growth relationships of Quercus petraea Mill. stand in the Forest of Bercé (”Futaie des Clos”, Sarthe, France). Annals of Forest Science 61: 361–372.
  • Levanič T, Popa I, Polajanšek S & Nechita C (2013) A 323-year long reconstruction of drought for SW Romania based on black pine (Pinus Nigra) tree-ring widths. International Journal of Biometeorology 57: 703–714.
  • Maaten-Theunissen van der M & Bouriaud O (2012) Climate-growth relationships at different stem heights in silver fir and Norway spruce. Canadian Journal of Forest Research 42: 958–969.
  • Matisons R, Elferts D & Brūmelis G (2013) Possible signs of growth decline of pedunculate oak in Latvia during 1980–2009 in tree-ring width and vessel size. Baltic Forestry 19(1): 137–142.
  • McKee TB, Doesken NJ & Kleist J (1993) The relationship of drought frequency and duration to time scales. Preprints, Eighth Conference on Applied Climatology, January 17–22, Anaheim, California, pp. 179–184.
  • Nechita C, Popa I & Eggertsson O (2017) Climate response of oak (Quercus spp.), an evidence of a bioclimatic boundary induced by the Carpathians. Science of the Total Environment 599–600: 1598–1607.
  • Nechita C (2013) Rețeaua națională de serii dendrocronologice pentru stejar și gorun. Editura Silvică, București, Romania.
  • Pilcher JR & Gray B (1982) The relationship between oak tree growth and climate in Britain. Journal of Ecology 70: 297–304.
  • Pritzkow C, Wazny T, Heußner KU, Słowiński M, Bieber A, Liñán ID, Helle G & Heinrich I (2016) Minimum winter temperature reconstruction from average earlywood vessel area of European oak (Quercus robur) in N-Poland. Palaeogeography. Palaeoclimatology. Palaeoecology 449: 520–530.
  • Rădoane M, Nechita C, Chiriloaei F, Rădoane N, Popa I, Roibu C & Robu D (2015) Late Holocene fluvial activity and correlations with dendrochronology of subfossil trunks: Case studies of northeastern Romania. Geomorphology 239: 142–159.
  • Rinn F (1996) TSAP. Time series analysis and presentation. Version 3.0 reference manual. Heidelberg, Germany.
  • Rozas V (2001) Detecting the impact of climate and disturbances on tree – rings of Fagus sylvatica L. and Quercus robur L. in a lowland forest in Can tabria, Northern Spain. Annals of Forest Science 58: 237–251.
  • Sohar K, Helama S, Läänelaid A, Raisio J & Tuomenvirta H (2013) Oak decline in a southern Finish forest as affected by a drought sequence. Geochronometria 41: 92–103.
  • Stajić B, Vučković M & Janjatović Ž (2015) Preliminary dendroclimatological analysis of Sessile oak (Quercus petraea (Matt.) Liebl.) in “Fruška Gora” National Park, Serbia. Baltic Forestry 21: 83–95.
  • Tardif JC & Conciatori F (2006) Influence of climate on tree rings in red oak and white oak growing near their northern distribution limit, southwestern Quebec, Canada. Canadian Journal of Forest Research 36: 2317–2330. doi:10.1139/x06-133.
  • Trnka M, Brázdil R, Možný M, Štěpánek P, Dobrovolný P, Zahradníček P, Balek J, Semerádová D, Dubrovský M, Hlavinka P, Eitzinger J, Wardlow B, Svoboda M, Hayes M & Žalud Z (2015) Soil moisture trends in the Czech Republic between 1961 and 2012. International Journal of Climatology 35: 3733–3747.
  • Trouet V & Van Oldenborgh GJ (2013) KNMI Climate Explorer: a web-based research tool for high-resolution paleoclimatology. Tree-Ring Research 69: 3–13.
  • Ważny T, Lorentzen B, Köse N, Akkemik Ü, Boltryk Y, Güner T, Kyncl J, Kyncl T, Nechita C, Sagaydak S & Kamenova Vasileva J (2014) Bridging the gaps in tree-ring records: creating a high-resolution dendrochronological network for southeastern Europe. Radiocarbon 56: S39–S50 and Tree-Ring Research 70: 39–50.
  • Wigley TML, Briffa KR & Jones PD (1984) On the average value of correlated time-series, with applications in dendroclimatology and hydrometeorology. Journal of Climate and Applied Meteorology 23: 201–213.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.