Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 75 | 07 |

Tytuł artykułu

Wpływ glutaminianu sodu na immunoreaktywność kalretyniny w jądrze grzbietowym szwu u dorosłych szczurów

Warianty tytułu

Influence of monosodium glutamate on calretinin immunoreactivity in the dorsal raphe nucleus in adult rats

Języki publikacji



The aim of this study was to investigate changes of calretinin immunoreactivity in neurons and neuropil of the dorsal raphe nucleus (DRN) after subcutaneous administration of monosodium glutamate (MSG) to adult rats. Studies were conducted on 60-day-old male rats. The animals were divided into a control group (C) and two other groups receiving MSG at a dose of 2g/kg b.w. (I) and 4g/kg b.w. (II) subcutaneously for 3 consecutive days. Immunohistochemical peroxydese-antiperoxydase reaction was conducted with the use of a specific anti-calretinin (CR) antibody on brain slides containing DRN of 63-day-old rats. The cells and neuropil were morphologically and morphometrically analysed under the light microscope Olympus BX51. Statistically significant differences were studied with ANOVA and nonparametric Kruskal-Wallis test. In 63-day-old rats, in DRN: dorsal (DRNd), ventral (DRNv) and interfascicular (DRNif) parts, in animals receiving MSG (I and II), there was a decrease in CR- immunoreactivity in neurons and neuropil in comparison to control rats. Only in the ventrolateral part (DRNvl) a few intensively stained CR-immunoreactive cells were demonstrated. Light microscope observations were confirmed by morphometric analyses. In the DRNd and DRNv of rats receiving MSG (I and II) a decrease in average CR-immunoreactive neuron density was shown in comparison to the C group. In the DRNvl part, a statistically significant decrease in the analysed parameter was present only in I group of animals. Conversely, in DRNif no statistically significant differences were shown between studied groups of rats. In the DRN of animals receiving MSG (I and II) a decrease in average digital immunostaining intensity for CR occurred in neurons and neuropil. The obtained results demonstrated a decrease in CR immunostaining intensity level in neurons and neuropil and a decrease in density of studied protein immunoreactive cells under the influence of subcutaneous administration of MSG to adult rats. These results suggest that MSG may cause neuronal death as a result of oxidative stress or it can alter a calretinin conformation in cells after binding to calcium ions.








Opis fizyczny



  • Katedra Anatomii i Histologii Zwierząt, Wydział Medycyny Weterynaryjnej, Uniwersytet Przyrodniczy w Lublinie, ul.Akademicka 12, 20-033 Lublin
  • Katedra Anatomii i Histologii Zwierząt, Wydział Medycyny Weterynaryjnej, Uniwersytet Przyrodniczy w Lublinie, ul.Akademicka 12, 20-033 Lublin
  • Katedra Anatomii i Histologii Zwierząt, Wydział Medycyny Weterynaryjnej, Uniwersytet Przyrodniczy w Lublinie, ul.Akademicka 12, 20-033 Lublin


  • Abrams J. K., Johnson P. L., Hollis J. H., Lowry C. A.: Anatomical and functional topography of the dosal raphe nucleus. Ann. N.Y. Acad. Sci. 2004, 1018, 46-57.
  • Arai R., Winsky L., Arai M., Jacobowitz D. M.: Immunocytochemical localization of calretinin in the rat hindbrain. J. Comp. Neurol. 1991, 310, 21-44.
  • Barinka F., Druga R.: Calretinin expression in the mammalian neocortex: a review. Physiol. Res. 2010, 59, 665-677.
  • Billing-Marczak K., Kuźnicki J.: Calretinin-sensor or buffer-function still unclear. Pol. J. Pharmacol. 1999, 51, 173-178.
  • Cekić S., Filipović M., Jović Z., Milkica N., Pešić G., Ćirić M., Petrović A., Branković S., Živanov J., Radenković M.: Histopathological changes at the hypothalamic nucleus arcuatus and thyroid level in rats treated with monosodium glutamate. Acta Fac. Med. Naiss. 2004, 21, 89-94.
  • Charara A., Parent A.: Chemoarchitecture of the primate dorsal raphe nucleus. J. Chem. Neuroanat. 1998, 15, 111-127.
  • Dief A. E., Kamha E. S., Baraka A. M., Elshorbagy A. K.: Monosodium glutamate neurotoxicity increases beta amyloid in the rat hippocampus: a potential role for cyclic AMP protein kinase. Neurotoxicology 2014, 42, 76-82.
  • Eweka A., Om’lniabohs F.: Histological studies of the effect of monosodium glutamate on the cerebellum of adult Wistar rats. Int. J. Neurol. 2006, 8, 1-5.
  • Eweka A., Om’lniabohs F.: Histological studies of the effects of monosodium glutamate on the lateral geniculate body of adult Wistar rats. Int. J. Nutr. Wellnes 2007, 5, 1-6.
  • Ganesan K., Sukalingam K., Balamurali K., Alaudeen S. R. Bt. S., Ponnusamy K., Ariffin I. A., Gani S. B.: A studies on monosodium L-glutamate toxicity in animal models – a review. I. J. P. C. B. S. 2013, 3, 1257-1268.
  • Gocho Y., Sakai A., Yanagawa Y., Suzuki H., Saitow F.: Electrophysiological and pharmacological properties of GABAergic cells in the dorsal raphe nucleus. J. Physiol. Sci. 2013, 63, 147-154.
  • González-Burgos I., Peréz-Vega M. I., Beas-Zárate C.: Neonatal exposure to monosodium glutamate induces cell death and dendritic hypotrophy in rat prefrontocortical pyramidal neurons. Neurosci. Lett. 2001, 297, 69-72.
  • Gulyás A. I., Hájos N., Freund T. F.: Interneurons containing calretinin are specialized to control other interneurons in the rat hippocampus. J. Neurosci. 1996, 16, 3397-3411.
  • Hashem H. E., El-Din Safwat M. D., Algaidi S.: The effect of monosodium glutamate on the cerebellar cortex of male albino rats and the protective role of vitamin C (histological and immunohistochemical study). J. Mol. Histol. 2012, 43, 179-186.
  • Hornung J. P.: The human raphe nuclei and the serotoninergic system. J. Chem. Neuroanat. 2003, 26, 331-343.
  • Hu L., Fernstrom J. D., Goldsmith P. C.: Exogenous glutamate enhances glutamate receptor subunit expression during selective neuronal injury in the ventral arcuate nucleus of postnatal mice. Neuroendocrinology 1998, 68, 77-88.
  • Husarova V., Ostatnikova D.: Monosodium glutamate toxic effects and their implications for human intake: a review. J. Med. Res. 2013, 1-12.
  • Jacobs B. L., Azmitia E. C.: Structure and function of the brain serotonin system. Physiol. Rev. 1992, 72, 165-229.
  • König J. F. R., Klippel F. A.: The rat brain: A stereotactic of the forebrain and lower part of the brainstem. William and Wilkins: Baltimore 1963.
  • Kuźnicki J., Filipek A.: Heterogenity and multifunctionality of calcium binding proteins (CaBP). Kosmos 1997, 4, 603-608.
  • Lowry C. A., Evans A. K., Gasser P. J., Hale M., Staub D. R., Shekhar A.: Topographic organization and chemoarchitecture of the dorsal raphe nucleus and the median raphe nucleus, [w:] Monti J. M., Pandi-Perumal S. R., Jacobs B. L., Nutt D. J. (red.): Serotonin and sleep: molecular, functional and clinical aspects. Wyd. Birkhaeuser, Basel 2008, s. 25-67.
  • Mark L. P, Prost R. W., Ulmer J. L., Smith M. M., Daniels D. L., Strottmann J. M., Brown W. D., Hacein-Bey L.: Pictorial review of glutamate excitotoxicity: fundamental concepts for neuroimaging. A. J. N. R. Am. J. Neuroradiol. 2001, 22, 1813-1824.
  • Matos L. L., Stabenow E., Tavares M. R., Rerraz A. R., Capelozzi V. L., Pinhal M. A.: Immunohistochemistry quantification by a digital computer-assisted method compared to semiquantitative analysis. Clinics (Sao Paulo) 2006, 61, 417-424.
  • Mattson M. P.: Glutamate and neurotrophic factors in neuronal plasticity and disease. Ann. N. Y Acad. Sci. 2008, 1144, 97-112.
  • Meldrum B. S.: Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J. Nutr. 2000, 130 (4S Suppl.), 1007S-1015S.
  • Michelsen K. A., Schmitz C., Steinbusch H. W.: The dorsal raphe nucleus – from silver stainings to a role in depression. Brain Res. Rev. 2007, 55, 329-342.
  • Monti J. M.: The structure of the dorsal raphe nucleus and its relevance to the regulation of sleep and wakefulness. Sleep Med. Rev. 2010, 14, 307-317.
  • Nguyen D. H., Zhou T., Shu J., Mao J. H.: Quantifying chromogen intensity in immunohistochemistry via reciprocal intensity. Cancer In Cytes 2013, 2, 1-4.
  • Onaolapo O. J., Onaolapo A. Y., Akanmu M. A., Gbola O.: Evidence of alterations in brain structure and antioxidant status following ‘low dose’ monosodium glutamate ingestion. Pathophysiology 2016, 23,147-156.
  • Peláez B., Blázquez J. L., Pastor F. E., Sánchez A., Amat P.: Lectin histochemistry and ultrastructure of microglial response to monosodium glutamate-mediated neurotoxicity in the arcuate nucleus. Histol. Histopathol. 1999, 14, 165-174.
  • Schwaller B.: Calretinin: from a „simple” Ca2+ buffer to a multifunctional protein implicated in many biological processes. Front. Neuroanat. 2014, 8, 1-7.
  • Sharp C. D., Hines I., Houghton J., Warren A., Jackson T. H. 4th, Jawahar A., Nanda A., Elrod J. W., Long A., Chi A., Minagar A., Alexander J. S.: Glutamate causes a loss in human cerebral endothelial barrier integrity through acitvation od NMDA receptor. Am. J. Physiol. Heart Circ. Physiol. 2003, 285, H2592-H2598.
  • Siucińska E.: Inhibitory neurotransmitter in cerebral cortex plasticity. Kosmos 2005, 54, 195-212.
  • Takasaki Y.: Studies on brain lesion by administration of monosodium L-glutamate to mice. Brain lesions in infant mice caused by administration of monosodium L-glutamate. Toxycology 1978, 9, 293-305.
  • Umukoro S., Oluwole G. O., Olamijowon H. E., Omogbiya A. I., Eduviere A. T.: Effect of monosodium glutamate on behavioral phentotypes, biomarkers of oxidative stress in brain tissues and liver enzymes in mice. W.J.N.S. 2015, 5, 339-349.
  • Wang Q. P., Ochiai H., Nakai Y.: GABAergic innervation of serotonergic neurons in the dorsal raphe nucleus of the rat studied by electron microscopy double immunostaining. Brain Res. Bull. 1992, 29, 943-948.
  • Winsky L., Kuźnicki J.: Antibody recognition of calcium binding proteins depends of their calcium binding status. J. Neurochem. 1996, 66, 764-771.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.