PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 10 | 1 |

Tytuł artykułu

Identification of bat species in Greece from their echolocation calls

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Bats are the second most speciose order of mammals and are under significant threat throughout the world. Survey and monitoring of bats for conservation are severely hampered by the lack of a reliable and user-friendly method of identifying bats from their echolocation calls. We recorded and described time-expanded echolocation calls from 23 bat species in the National Park of Dadia-Lefkimi-Soufli, Greece. We compared the performance of quadratic and linear discriminant function analysis (DFA) of calls as a means of identifying species. Quadratic rather than linear DFA has been used by several researchers because of the violation of the method's basic assumption (homogeneity of variance-covariance matrices). However, when linear DFA was applied for the classification of recorded species in this study, correct classification rate was identical to the quadratic functions (82.4%) and linear models did not misclassify bats to the species with the greatest dispersion, the main problem caused by violation of the homogeneity assumption. The advantage of linear DFA is that it provides discriminant function coefficients. The linear combination of these coefficients and parameters from calls from unidentified bats can be used for species identification without access to the original data sets, an option not provided by quadratic analysis. When separate models were developed for Myotis species and for FM/QCF species, correct classification rates increased to 84.8% and 93.4%, respectively. DF coefficients thus provide a reliable identification tool, but intraspecific geographic variation must be taken into account.

Wydawca

-

Rocznik

Tom

10

Numer

1

Opis fizyczny

p.127-143,fig.,ref.

Twórcy

autor
  • Institute of Integrative and Comaparative Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
autor
  • Department of Animal and Plant Sciences, Unievrsity of Sheffield, Sheffield S10 2TN, U.K.
  • Institute of Integrative and Comaparative Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.

Bibliografia

  • 1. R. M R. Barclay, J. H. Fullard, and D. S. Jacobs . 1999. Variation in the echolocation calls of the hoary bat (Lasiurus cinereus): influence of body size, habitat structure, and geographic location. Canadian Journal of Zoology 77:530–534. Google Scholar
  • 2. K. E. Barlow and G. Jones . 1997. Differences in songflight calls and social calls between two phonic types of the vespertilionid bat Pipistrellus pipistrellus. Journal of Zoology (London) 241:315–324. Google Scholar
  • 3. M. B. Fenton and G. P. Bell . 1981. Recognition of species of insectivorous bats by their echolocation calls. Journal of Mammalogy 62:233–243. Google Scholar
  • 4. A. Field 2005. Discovering statistics using SPSS, 2nd edition. ISM introducing statistical methods Sage, London. 816. pp. Google Scholar
  • 5. G. D. Garson 2006. Discriminant function analysis. Last accessed 25 January 2007: http://www2.chass.ncsu.edu/garson/pa765/discrim.htm. Google Scholar
  • 6. K. G. Heller and O. von Helversen . 1989. Resource partitioning of sonar frequency bands in rhinolophoid bats. Oecologia 80:178–186. Google Scholar
  • 7. M. W. Holderied and O. von Helversen . 2003. Echolocation range and wingbeat period match in aerial-hawking bats. Proceedings of the Royal Society of London 270B:2293–2299. Google Scholar
  • 8. G. Jones, N. Vaughan, and S. Parsons . 2000. Acoustic identification of bats from directly sampled and time expanded recordings of vocalizations. Acta Chiropterologica 2:155–170. Google Scholar
  • 9. E. K V. Kalko 1995. Insect pursuit, prey capture and echolocation in pipistrelle bats (Microchiroptera). Animal Behaviour 50:861–880. Google Scholar
  • 10. E. K V. Kalko and H-U. Schnitzler . 1993. Plasticity in echolocation signals of European pipistrelle bats in search flight: implications for habitat use and prey detection. Behavioral Ecology and Sociobiology 33:415–428. Google Scholar
  • 11. F. Mayer, C. Dietz, and A. Kiefer . 2007. Molecular species identification boosts bat diversity. Frontiers in Zoology 4:4. Google Scholar
  • 12. K. Mcgarigal, S. Cushman, and S. Stafford . 2000. Multivariate statistics for wildlife and ecology research Springer-Verlag. New York. 283. pp. Google Scholar
  • 13. L. A. Miller and H. J. Degn . 1981. The acoustic behavior of four species of vespertilionid bats studied in the field. Journal of Comparative Physiology 142:67–74. Google Scholar
  • 14. M. K. Obrist 1995. Flexible bat echolocation – the influence of individual, habitat and conspecifics on sonar signal design. Behavioral Ecology and Sociobiology 36:207–219. Google Scholar
  • 15. M. K. Obrist, R. Boesch, P. F. Fluckiger, and U. Dieckmann . 2004. Who's calling? Acoustic bats species identification revised with energetics. Pp 484–492. in Echolocation in bats and dolphins J. A. Thomas, C. F. Moss, and M. Vater , editors. eds. University of Chicago Press. Chicago. 636. pp. Google Scholar
  • 16. M. J. O'Farrell, C. Corben, and W. L. Gannon . 2000. Geographic variation in the echolocation calls of the hoary bat (Lasiurus cinereus). Acta Chiropterologica 2:185–195. Google Scholar
  • 17. K. J. Park, J. D. Altringham, and G. Jones . 1996. Assortative roosting in the two phonic types of Pipistrellus pipistrellus during the mating season. Proceedings of the Royal Society of London 263B:1495–1499. Google Scholar
  • 18. S. Parsons 2001. Identification of New Zealand bats (Chalinolobus tuberculatus and Mystacina tuberculata) in flight from analysis of echolocation calls by artificial neural networks. Journal of Zoology (London) 253:447–456. Google Scholar
  • 19. S. Parsons and G. Jones . 2000. Acoustic identification of twelve species of echolocating bat by discriminant function analysis and artificial neural networks. Journal of Experimental Biology 203:2641–2656. Google Scholar
  • 20. G. Pfalzer and J. Kusch . 2003. Structure and variability of bat social calls: implications for specificity and individual recognition. Journal of Zoology (London) 261:21–33. Google Scholar
  • 21. G. P. Quinn and M. J. Keough . 2002. Experimental design and data analysis for biologists Cambridge University Press. Cambridge. 562. pp. Google Scholar
  • 22. D. Russo and G. Jones . 1999. The social calls of Kuhl's pipistrelles Pipistrellus kuhlii (Kuhl, 1819): structure and variation (Chiroptera: Vespertilionidae). Journal of Zoology (London) 249:476–481. Google Scholar
  • 23. D. Russo and G. Jones . 2002. Identification of twenty-two bat species (Mammalia: Chiroptera) from Italy by analysis of time-expanded recordings of echolocation calls. Journal of Zoology (London) 258:91–103. Google Scholar
  • 24. D. Russo, G. Jones, and M. Mucedda . 2001. Influence of age, sex and body size on echolocation calls of Mediterranean and Mehely's horseshoe bats, Rhinolophus euryale and R. mehelyi (Chiroptera: Rhinolophidae). Mammalia 65:429–436. Google Scholar
  • 25. J. Rydell and R. Arlettaz . 1994. Low-frequency echolocation enables the bat Tadarida teniotis to feed on tympanate insects. Proceedings of the Royal Society of London 257B:175–178. Google Scholar
  • 26. N. Vaughan, G. Jones, and S. Harris . 1997. Identification of British bat species by multivariate analysis of echolocation call parameters. Bioacoustics 7:189–207. Google Scholar
  • 27. D. A. Waters and W. L. Gannon . 2004. Bat call libraries: management and potential use. Pp 150–157. in Bat echolocation research R. M. Brigham, E. K V. Kalko, G. Jones, S. Parsons, and H. J G. A. Limpens , editors. eds. Bat Conservation International. Austin. 167. pp. Google Scholar
  • 28. R. Weid and O. von Helversen . 1987. Ortungsrufe europäischer Fledermäuse beim Jagdflug im Freiland. Myotis 25:5–27. Google Scholar

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-1268f4a3-4f2c-43ef-8ad6-37d6ba0eed76
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.