Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 21 | 6 |

Tytuł artykułu

Fungal biomass for Cu(II) uptake from aqueous systems

Warianty tytułu

Języki publikacji



At present, heavy metals pollution is becoming a more and more serious problem for the environment and public health. Removal of heavy metals and metalloids from aqueous solutions is generally achieved through several processes such as chemical precipitation/neutralization, solvent extraction, ion exchange, membrane separation, reverse osmosis, or adsorption. These processes are efficient in removing the bulk of metals from solution at high or moderate concentrations. For lower metal concentrations, and in case of pollution with nanoparticles, these processes are expensive, and they are replaced by alternative methods (such as biosorption) that use different natural materials of biological origin. The objective of the present study is to investigate the use of fungal biomass as the biosorbent for the removal of Cu(II) from an aqueous solution that contains copper sulfide nanoparticles. The capacity to retain Cu(II) from aqueous suspension used is determined and compared for the following fungal strains: Aspergillus oryzae, Aspergillus niger, Fusarium oxysporum, and Polyporus squamosus. The results obtained show that the specific copper uptake varies between 1.66 mg/g and 7.52 mg/g. The maximum specific copper uptake value (7.52 mg/g) was obtained for the fungus strain Fusarium oxisporum MUCL 791. Analysis of the IR spectra revealed that the mechanism of the copper uptake by fungal biomass involves interactions between copper ions and hydroxyl, amino, carboxyl, and carbonyl groups from fungal biomass surface depending on the types of fungal strain. Desorption studies showed that copper recovery efficiency varied between 82 and 86% when acidic solutions were used as eluents.

Słowa kluczowe








Opis fizyczny



  • University of Agricultural Sciences and Veterinary Medicine of Cluj Napoca, Calea Manaştur 3-5, RO-400372, Cluj-Napoca, Romania
  • Department of Chemical Engineering, Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, Polizu Street, No. 1-7, RO-011061, Bucharest, Romania


  • 1. URBANIAK M., ZIELIŃSKI M., WESOLOWSKI W., ZALEWSKI M. PCB and Heavy Metal Contamination in Bottom Sediments from Three Reservoirs of Different Catchment Characteristics. Pol. J. Environ. Stud., 17, (6), 941, 2008.
  • 2. KUKLOVÁ M., KUKLA J., HNILIČKA F. The Soil-toHerbs Transfer of Heavy Metals in Spruce Ecosystems. Pol. J. Environ. Stud., 19, (6), 1263, 2010.
  • 3. DUBE A., ZBYTNIEWSKI R., KOWALKOWSKI T., CUKROWSKA E., BUSZEWSKI B. Adsorption and Migration of Heavy Metals in Soil. Pol. J. Environ. Stud., 10, (1), 1, 2001.
  • 4. WANG J. L., CHEN C. Biosorbents for heavy metals removal and their future. Biotechnol. Adv., 27, 195, 2009.
  • 5. WANG J. L., CHEN C, Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol. Adv., 24, 427, 2006.
  • 6. SUBBAIAH M. V., YUVARAJA G., VIJAYA Y., KRISHNAIAH A. Equilibrium, kinetic and thermodynamic studies on biosorption of Pb(II) and Cd(II) from aqueous solution by fungus (Trametes versicolor) biomass. J. Taiwan Inst. Chem. Eng., doi:10.1016/j.jtice.2011.04.007, 2011.
  • 7. LEWIS A. E. Review of metal sulphide precipitation. Hydrometallurgy, 104, 222, 2010.
  • 8. AL-GARNI S. M., GHANEM K. M., BAHOBAIL A.S. Biosorption characteristics of Aspergillus fumigatus in removal of cadmium from aqueous solution. Afr. J. Biotechnol., 8, (17), 4163, 2009.
  • 9. SUBRAMANIAM K., YIACOUMI S., TSOURIS C. Copper uptake by inorganic particles – equilibrium, kinetics, and particle interactions: experimental, Colloid Surfaces A: Physicochem Eng Asp., 177, (203), 133, 2000.
  • 10. GEORGAKA A., SPANOS N. Study of the Cu(II) removal from aqueous solutions by adsorption on titania. Global NEST J., 12, (3), 239, 2010.
  • 11. MAZUMDER D., GHOSH D., BANDYOPADHYAY P. Treatment of Electroplating Wastewater by Adsorption Technique. Int. J Civil Environ. Eng., 3, (2), 101, 2011.
  • 12. BAI Y., RONG F., WANG H., ZHOU Y., XIE X., TENG J. Removal of Copper from Aqueous Solutions by Adsorption on Elemental Selenium Nanoparticles. J. Chem. Eng. Dat., 56, (5), 2563, 2011.
  • 13. WAHI R., NGAINI Z., JOK V. U. Removal of Mercury, Lead and Copper from Aqueous Solution by Activated Carbon of Palm Oil Empty Fruit Bunch. World Appl Sci J., 5 (Special Issue for Environment), 84, 2009.
  • 14. PATNUKAO P., KONGSUWAN A., PAVASANT P., Batch studies of adsorption of copper and lead on activated carbon from Eucalyptus camaldulensis Dehn. Bark, J Env. Sci., 20, 1028, 2008. 15. KIM M.-S., CHUNG J. G. Removal of Copper(II) Ion by Kaolin in Aqueous Solutions. Environ, Eng Res. 7, (1), 49, 2002.
  • 16. JEON C. Adsorption characteristics of copper ions using magnetically modified medicinal stones, J. Ind. Eng. Chem., 17, 321, 2011.
  • 17. CHAARI I., MEDHIOUB M., JAMOUSSI F., Use of Clay to Remove Heavy Metals from Jebel Chakir Landfill Leachate. J Appl Sci Environ Sanit, 6, (2), 143, 2011.
  • 18. DING S.-L., SUN Y.-Z., YANG, C-N., XU B-H. Removal of copper from aqueous solutions by bentonites and the factors affecting it. Min Sci Technol (China), 19, (4), 489, 2009.
  • 19. WANG X. –S., Equilibrium and Kinetic Analysis for Cu2+ and Ni2+ Adsorption Onto Na-Mordenite. The Open Environ Poll & Toxicol J., 1, 107, 2009.
  • 20. SIMONESCU C. M., DINCĂ O.-R. , OPREA O., CĂPĂŢÎNĂ C. Kinetics and Equilibrium Studies on Sorption of Copper from Aqueous Solutions onto Thermal Power Plants Ash. Rev. Chim (Bucharest), 62, (2), 183, 2011.
  • 21. CHEN C.-Y., YANG C.-Y., CHEN A.-H. Biosorption of Cu(II), Zn(II), Ni(II) and Pb(II) ions by cross-linked metalimprinted chitosans with epichlorohydrin. J. Environ. Manage., 92, 796, 2011.
  • 22. SALAM O. E. A., REIAD N. A., ElSHAFEI M. M. A study of the removal characteristics of heavy metals from wastewater by low-cost adsorbents. J. Adv. Res., doi:10.1016/j.jare.2011.01.008, 2011.
  • 23. AHMED S. A. Batch and fixed-bed column techniques for removal of Cu(II) and Fe(III) using carbohydrate natural polymer modified complexing agents. Carbohydr. Polym., 83, 1470, 2011.
  • 24. LIU C. C., LI Y. S., CHEN Y. M., WANG M. K., CHIOU C. S., YANG C. Y., LIN Y. A. Biosorption of chromium, copper and zinc on rice wine processing waste sludge in fixed bed. Desalination, 267, 20, 2011.
  • 25. ZHENG Y., FANG X., YE Z., LI Y., CAI W. Biosorption of Cu(II) on extracellular polymers from Bacillus sp. F19, J. Env. Sci., 20, 1288, 2008.
  • 26. SARI A., TUZEN M. Biosorption of total chromium from aqueous solution by red algae (Ceramium virgatum): Equilibrium, kinetic and thermodynamic studies. J. Hazard. Mater., 160, (2-3), 349, 2008.
  • 27. SARI A., MENDIL D., TUZEN M., SOYLAK M. Biosorption of Cd(II) and Cr(III) from aqueous solution by moss (Hylocomium splendes) bimass: Equilibrium, kinetic and thermodynamic studies. Chem. Eng. J., 144, (1), 1, 2008.
  • 28. ULUOZLU O.D., SARI A., TUZEN M., SOYLAK M. Biosorpiton of Pb(II) and Cr(III) from aquepus solution by lichen (Parmelina tiliaceae) biomass. Biores. Technol., 99, (8), 2972, 2008.
  • 29. NAJIM T. S., ELAIS N. J., DAWOOD A. A. Adsorption of Copper and Iron Using Low Cost Material as Adsorbent, EJ Chem., 6, (1), 161, 2009.
  • 30. SARI A, TUZEN M. Kinetic and equilibrium studies of biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Amanita rubescens) biomass. J. Hazard. Mater., 164, (2-3), 1004, 2009.
  • 31. KAVAMURA V. N., ESPOSITO E. Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol. Adv., 28, 61, 2010.
  • 32. SUBBAIAH M. V., VIJAYA Y., REDDY A.S., YUVARAJA G., KRISHNAIAH A. Equilibrium, kinetic and thermodynamic studies on the biosorption of Cu(II) onto Trametes versicolor biomass. Desalination, doi:10.1016/j.desal. 2011.03.067, 2011.
  • 33. TSEKOVA T., TODOROVA D., GANEVA S. Removal of heavy metals from industrial wastewater by free and immobilized cells of Aspergillus niger. Int Biodeterior. Biodegrad., 64, 447, 2010.
  • 34. JAVAID A., BAJWA R., SHAFIQUE U., ANWAR J. Removal of heavy metals by adsorption on Pleurotus ostreatus. Biomass Bioenerg., 35, 1675, 2011.
  • 35. JAVANBAKHT V., ZILOUEI H., KARIMI K. Lead Biosorption by different morphologies of fungus Mucor indicus. Int Biodeterior Biodegrad., 65, 294, 2011.
  • 36. SU X. Z. H., XIAO T. T. G. Study of Thermodynamics and Dynamics of Removing Cu(II) by Biosorption Membrane of Penicillium Biomass. J. Hazard. Mater., doi:10.1016/j.jhazmat-.2011.03.014, 2010.
  • 37. VEIT M. T., TAVARES C. R. G., GOMES-DA-COSTA S. M., GUEDES T.A. Adsorption isotherms of copper(II) for two species of dead fungi biomasses. Process Biochem., 40, 3303, 2005.
  • 38. PREETHA B., VIRUTHAGIRI T. Application of response surface methodology for the biosorption of copper using Rhizopus arrhizus. J. Hazard. Mater., 143, 506, 2007.
  • 39. AKAR T., TUNALI S. Biosorption characteristics of Aspergillus flavus biomass for removal of Pb(II) and Cu(II) ions from an aqueous solution. Bioresour. Technol., 97, 1780, 2006.
  • 40. TAŞTAN B. E., ERTUĞRUL S., DÖNMEZ G. Effective bioremoval of reactive dye and heavy metals by Aspergillus versicolor. Bioresour. Technol., 101, 870, 2010.
  • 41. YAHAYA Y. A., DON M. M., BHATIA S. Biosorption of copper (II) onto immobilized cells of Pycnoporus sanguineus from aqueous solution: Equilibrium and kinetic studies. J. Hazard. Mater., 161, 189, 2009.
  • 42. PAN R., CAO L., ZHANG R. Combined effects of Cu, Cd, Pb, and Zn on the growth and uptake of consortium of Curesistant Penicillium sp. A1 and Cd-resistant Fusarium sp. A19. J. Hazard. Mater., 171, 761, 2009.
  • 43. LI X., XU Q., HAN G., ZHU W., CHEN Z., HE X., TIAN X. Equilibrium and kinetic studies of copper(II) removal by three species of dead fungal biomasses. J. Hazard. Mater., 165, 469, 2009.
  • 44. SIMONESCU C. M., PATRON L., TEODORESCU V. Ş., BREZEANU M., CĂPĂŢÎNĂ C. A facile chemical route to copper sulfide CuS nanocrystallites – pH effect of the morphology and the shape of them. J. Opt. Adv. Mater., 8, (2), 597, 2006.
  • 45. SIMONESCU C. M., TEODORESCU V. Ş., PATRON L., GIURGINCA M., CĂPĂŢÎNĂ C. Unconventional method used to obtain copper sulfide nanocristallites, Rev. Chim. (Bucharest), 56, (8), 810, 2005.
  • 46. SIMONESCU C. M., TEODORESCU V. Ş., BREZEANU M., MELINESCU A., Morphology and Shape Evolution of the Copper Monosulfide Nanocrystallites with the Reaction Time. Rev. Chim. (Bucharest), 56, (6), 611, 2005.
  • 47. DÖNMEZ G., AKSU Z. The effect of copper(II) ion son the growth and bioaccumulation properties of some yeasts. Process Biochem., 35, 135, 1999.
  • 48. BOYER A., MAGNIN J. P., OZIL P. Copper ion removal by Thiobacillus ferrooxidans biomass. Biotechnol. Lett., 187, 1998.
  • 49. TSEKOVA T., TODOROVA D., DENCHEVA V., GANEVA S. Biosorption of copper(II) and cadmium(II) from aqueous solutions by free and immobilized biomass of Aspergillus niger. Bioresour. Technol., 101, 1727, 2010.
  • 50. MUKHOPADHYAY M., NORONHA S. B., SURAISHKUMAR G. K. Kinetic modeling for the biosorption of copper by pretreated Aspergillus niger biomass. Bioresour. Technol., 98, (9), 1781, 2007.
  • 51. SIMONESCU C. M., DIMA R., FERDEŞ M., FLOREA Ghe., PARASCHIV E., CUCU T. Biosorption characteristics of Penicillium hirsutum biomass for removal of Cu(II) ions from aqueous solution that contains CuS nanoparticles Tehnologies and advanced materials – Proceedings of International Conference UGALMAT 2011, 21-22 October 2011, Editor Cănănău Nicolae, Co-editors: Balint Simion, Bordei Marian, Gurău Gheorghe, “Dunărea de Jos” Galaţi University Publishing House, ISSN 1843- 5807, 254, 2011.
  • 52. SHROFF K. A., VAIDYA V. K. Kinetics and equilibrium studies on biosorption of Nickel from aqueous solution by dead fungal biomass of Mucor hiemalis, Chem. Eng. J., doi:10.1016/j.cej.2011.05.034, 2010.
  • 53. AKAR T., TUNALI S., KIRAN I. Botrytis cinerea as a new fungal biosorbent for removal of Pb(II) from aqueous solutions, Biochem. Eng. J., 25, (30), 227, 2005.
  • 54. ANAYURT R. A., SARI A., TUZEN M. Equilibrium, thermodynamic and kinetic studies on biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Lactarius scrobiculatus) biomass, Chem. Eng. J., 151, (1-3), 255, 2009.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.