PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 12 | 3 |
Tytuł artykułu

Vascular related pathologies in cardiovascular disease and cancer

Warianty tytułu
PL
Patologia naczyń krwionośnych w chorobach układu krążenia i chorobach nowotworowych
Języki publikacji
EN
Abstrakty
EN
Cancer and Cardiovascular diseases (CVD) are the two most prominent causes of death worldwide. Emerging evidence indicates shared risk factors and a common biology between these diseases. For instance, chronic inflammation has a significant role in contributing to both diseases. An alteration of the vasculature and the endothelial cells plays a key role in pathogenesis of CVD and cancer. The widespread overlap regarding disease prevention and risk factors for these diseases suggest a common mechanism in terms of molecular pathways. The goal of this tutorial is to present common problems and mechanism of these two mayor diseases.
PL
Choroby nowotworowe i sercowo-naczyniowe (CVD) to dwie najczęstsze przyczyny śmierci na całym świecie. Pojawiające się dowody wskazują na wspólne czynniki ryzyka i wspólną biologię między tymi chorobami. Na przykład przewlekły stan zapalny ma znaczącą rolę w przyczynianiu się do obu chorób. Zmiana układu naczyniowego i komórek śródbłonka odgrywa kluczową rolę w patogenezie CVD i raka. Czynniki ryzyka tych chorób sugerują wspólny mechanizm pod względem szlaków molekularnych. Celem tego artykulu jest przedstawienie typowych problemów i mechanizmów tych dwóch chorób.
Wydawca
-
Rocznik
Tom
12
Numer
3
Opis fizyczny
p.163-187,ref.
Twórcy
  • Department of Medicine, Karolinska Institute in Solna, Solna, Sweden
autor
  • Department of Medicine, Karolinska Institute, Solnavagen 1, 171 77 Solna, Sweden
  • Department of Medicine, Warsaw University, Warsaw, Poland
Bibliografia
  • 1. Martin JA, Hamilton BE, Ventura SJ, Osterman MJ, Wilson EC, Mathews TJ. Births: final data for 2010. Natl Vital Stat Rep. 2012; 61(1): 1-72.
  • 2. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002; 420(6917): 860-7. https://doi.org/10.1038/nature01322
  • 3. Libby P. Inflammation and cardiovascular disease mechanisms. Am J Clin Nutr. 2006; 83(2): 456s-460s. https://doi.org/10.1093/ajcn/83.2.456S
  • 4. Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G, et al. The Vascular Endothelium and Human Diseases. International Journal of Biological Sciences. 2013; 9(10): 1057-1069. https://doi.org/10.7150/ijbs.7502
  • 5. Koene RJ, Prizment AE, Blaes A, Konety SH, Shared Risk Factors in Cardiovascular Disease and Cancer. Circulation. 2016; 133(11): 1104-14. https://doi.org/10.1161/CIRCULATIONAHA.115.020406
  • 6. Regina C, Panatta E, Candi E, Melino G, Amelio I, Balistreri CR, et al. Vascular ageing and endothelial cell senescence: Molecular mechanisms of physiology and diseases. Mechanisms of Ageing and Development. 2016; 159: 14-21. https://doi.org/10.1016/j.mad.2016.05.003
  • 7. Religa P, Cao R, Religa D, Xue Y, Bogdanovic N, Westaway D, et al. VEGF significantly restores impaired memory behavior in Alzheimer’s mice by improvement of vascular survival. Sci Rep, 2013. 3. 2053. https://doi.org/10.1038/srep02053
  • 8. Jani B, Rajkumar C. Ageing and vascular ageing. Postgraduate Medical Journal. 2006; 82(968): 357. https://doi.org/10.1136/pgmj.2005.036053
  • 9. Sudakov SA. [The application of parametric statistical methods for non-numerical data in psychiatry]. Zh Nevrol Psikhiatr Im S S Korsakova. 2002; 102(2): 51-3.
  • 10. Di Daniele N, Petramala L, Di Renzo L, Sarlo F, Della Rocca DG, Rizzo M, et al. Body composition changes and cardiometabolic benefits of a balanced Italian Mediterranean Diet in obese patients with metabolic syndrome. Acta Diabetologica. 2013; 50(3): 409-416. https://doi.org/10.1007/s00592-012-0445-7
  • 11. Menghini R, Casagrande V, Cardellini M, Martelli E, Terrinoni A, Amati F, et al. MicroRNA 217 Modulates Endothelial Cell Senescence via Silent Information Regulator 1. Circulation. 2009; 120(15): 1524. https://doi.org/10.1161/CIRCULATIONAHA.109.864629
  • 12. Sbraccia P, D’Adamo M, Leonetti F, Buongiorno A, Silecchia G, Basso MS, et al. Relationship between plasma free fatty acids and uncoupling protein-3 gene expression in skeletal muscle of obese subjects: in vitro evidence of a causal link. Clinical Endocrinology. 2002; 57(2): 199-207. https://doi.org/10.1046/j.1365-2265.2002.01593.x
  • 13. Fenton M, Barker S, Kurz DJ, Erusalimsky JD. Cellular Senescence After Single and Repeated Balloon Catheter Denudations of Rabbit Carotid Arteries. Arteriosclerosis, Thrombosis, and Vascular Biology. 2001; 21(2): 220. https://doi.org/10.1161/01.ATV.21.2.220
  • 14. Minamino T, Komuro I. Vascular Cell Senescence. Circulation Research. 2007; 100(1): 15. https://doi.org/10.1161/01.RES.0000256837.40544.4a
  • 15. van Es N, Le Gal G, Otten HM, Robin P, Piccioli A, Lecumberri R. et al. Screening for Occult Cancer in Patients With Unprovoked Venous Thromboembolism: A Systematic Review and Meta-analysis of Individual Patient Data. Ann Intern Med. 2017; 167(6): 410-417. https://doi.org/10.7326/M17-0868
  • 16. van Es N, Le Gal G, Otten HM, Robin P, Piccioli A, Lecumberri R, et al. Screening for cancer in patients with unprovoked venous thromboembolism: protocol for a systematic review and individual patient data metaanalysis. BMJ Open. 2017; 7(6): e015562. https://doi.org/10.1136/bmjopen-2016-015562
  • 17. De Marchi E, Baldassari F, Bononi A, Wieckowski MR, Pinton P. Oxidative stress in cardiovascular diseases and obesity: role of p66Shc and protein kinase C. Oxid Med Cell Longev. 2013; 2013. 564961. https://doi.org/10.1155/2013/564961
  • 18. Phaniendra A, Jestadi DB, Periyasamy L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian Journal of Clinical Biochemistry. 2015; 30(1): 11-26. https://doi.org/10.1007/s12291-014-0446-0
  • 19. Norrving, S.M.P.P.B. Global Atlas on Cardiovascular Disease Prevention and Control 2011: World Health Organization in collaboration with the World Heart Federation and the World Stroke Organization. 3-18.
  • 20. Palmer-Kazen U, Religa P, Wahlberg E. Exercise in patients with intermittent claudication elicits signs of inflammation and angiogenesis. Eur J Vasc Endovasc Surg. 2009; 38(6): 689-96. https://doi.org/10.1016/j.ejvs.2009.08.005
  • 21. Poole JCF, Florey HW. Changes in the endothelium of the aorta and the behaviour of macrophages in experimental atheroma of rabbits. The Journal of Pathology and Bacteriology. 1958; 75(2): 245-251. https://doi.org/10.1002/path.1700750202
  • 22. Cybulsky MI, Gimbrone MA. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science. 1991; 251(4995): 788. https://doi.org/10.1126/science.1990440
  • 23. Gimbrone MA Jr, Topper JN, Nagel T, Anderson KR, Garcia-Cardena G. Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann N Y Acad Sci. 2000; 902: 230-9; discussion 239-40. https://doi.org/10.1111/j.1749-6632.2000.tb06318.x
  • 24. De Caterina R, Libby P, Peng HB, Thannickal VJ, Rajavashisth TB, Gimbrone MA Jr, et al. Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. The Journal of Clinical Investigation. 1995; 96(1): 60-68. https://doi.org/10.1172/JCI118074
  • 25. Brown BG, Zhao X-Q, Chait A, Fisher LD, Cheung MC, Morse JS, et al. Simvastatin and Niacin, Antioxidant Vitamins, or the Combination for the Prevention of Coronary Disease. New England Journal of Medicine. 2001; 345(22): 1583-1592.https://doi.org/10.1056/NEJMoa011090
  • 26. Clinton SK, Underwood R, Hayes L, Sherman ML, Kufe DW, Libby P. Macrophage colony-stimulating factor gene expression in vascular cells and in experimental and human atherosclerosis. Am J Pathol. 1992; 140(2): 301-16.
  • 27. Rosenfeld ME, Yla-Herttuala S, Lipton BA, Ord VA, Witztum JL, Steinberg D. Macrophage colony-stimulating factor mRNA and protein in atherosclerotic lesions of rabbits and humans. Am J Pathol. 1992; 140(2): 291-300.
  • 28. Grudzinska MK, Kurzejamska E, Bojakowski K, Soin J, Lehmann MH, Reinecke H, et al. Monocyte chemoattractant protein 1-mediated migration of mesenchymal stem cells is a source of intimal hyperplasia. Arterioscler Thromb Vasc Biol. 2013; 33(6): 1271-9. https://doi.org/10.1161/ATVBAHA.112.300773
  • 29. Religa P. The future application of induced pluripotent stem cells in vascular regenerative medicine. Cardiovasc Res. 2012; 96(3): 348-9. https://doi.org/10.1093/cvr/cvs319
  • 30. Religa P, Bojakowski K, Bojakowska M, Gaciong Z, Thyberg J, Hedin U. Extracellular matrix composition and cellular mechanisms of transplant vasculopathy in rat aortic allografts. Transplant Proc. 2002; 34(2): 687-8. https://doi.org/10.1016/S0041-1345(01)02888-3
  • 31. Religa P, Bojakowski K, Bojakowska M, Gaciong Z, Thyberg J, Hedin U. Allogenic immune response promotes the accumulation of host-derived smooth muscle cells in transplant arteriosclerosis. Cardiovasc Res. 2005; 65(2): 535-45. https://doi.org/10.1016/j.cardiores.2004.10.011
  • 32. Religa P, Bojakowski K, Gaciong Z, Thyberg J, Hedin U. Arteriosclerosis in rat aortic allografts: dynamics of cell growth, apoptosis and expression of extracellular matrix proteins. Mol Cell Biochem, 2003: 249(1-2); 75-83. https://doi.org/10.1023/A:1024755210105
  • 33. LaRosa JC, He J, Vupputuri S. Effect of statins on risk of coronary disease: A meta-analysis of randomized controlled trials. JAMA. 1999; 282(24): 2340-2346. https://doi.org/10.1001/jama.282.24.2340
  • 34. Kazi M, Thyberg J, Religa P, Roy J, Eriksson P, Hedin U, et al. Influence of intraluminal thrombus on structural and cellular composition of abdominal aortic aneurysm wall. J Vasc Surg. 2003; 38(6): 1283-92.
  • 35. Siemann DW. The unique characteristics of tumor vasculature and preclinical evidence for its selective disruption by Tumor-Vascular Disrupting Agents. Cancer Treat Rev. 2011; 37(1): 63-74. https://doi.org/10.1016/j.ctrv.2010.05.001
  • 36. Gee MS, Procopio WN, Makonnen S, Feldman MD, Yeilding NM, Lee WM. Tumor vessel development and maturation impose limits on the effectiveness of anti-vascular therapy. Am J Pathol, 2003. 162(1). 183-93. https://doi.org/10.1016/S0002-9440(10)63809-6
  • 37. Barton M, Baretella O, Meyer MR. Obesity and risk of vascular disease: importance of endotheliumdependent vasoconstriction. Br J Pharmacol. 2012; 165(3): 591-602. https://doi.org/10.1111/j.1476-5381.2011.01472.x
  • 38. Koziak K, Bojakowska M, Robson SC, Bojakowski K, Soin J, Csizmadia E, et al. Overexpression of CD39/nucleoside triphosphate diphosphohydrolase-1 decreases smooth muscle cell proliferation and prevents neointima formation after angioplasty. J Thromb Haemost. 2008; 6(7): 1191-7. https://doi.org/10.1111/j.1538-7836.2008.03019.x
  • 39. Rubanyi GM, Vanhoutte PM. Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor. Am J Physiol. 1986; 250(5 Pt 2): H822-7. https://doi.org/10.1152/ajpheart.1986.250.5.H822
  • 40. Fieldman JSP, Duong H, Saint-Aubin Y. Vinet L Rheology. Biology and Mechanics of Blood Flows. Part 2: Mechanics and Medical Aspects. 2007: Springer. https://doi.org/10.1007/978-0-387-74849-8
  • 41. Merriam-Webmaster. Definition of Blood. Retrieved March 2017.
  • 42. Alberts B. Table 22-1, in Molecular Biology of the Cell 2012, Garland Science.
  • 43. Elert G. Volume of Blood in a Human. The Physics Factbook, his students 2012.
  • 44. Baieth HEA. Physical Parameters of Blood as a Non - Newtonian Fluid. International Journal of Biomedical Science: IJBS. 2008; 4(4): 323-329.
  • 45. Olszewski WL, Durlik M, Lukomska B, Religa P, Ziolkowska H, Janczewska S, et al. DNA from rejecting allografts can be detected in recipient nonlymphoid tissues. Ann Transplant. 1999: 4(1); 39-41.
  • 46. Olszewski WL, Durlik M, Lukomska B, Religa P, Ziolkowska H, Janczewska S, et al. Donor DNA can be detected in recipient tissues during rejection of allograft. Transpl Int. 2000; 13 Suppl 1: S461-4. https://doi.org/10.1111/j.1432-2277.2000.tb02084.x https://doi.org/10.1007/s001470050383
  • 47. Religa P, Cao R, Bjorndahl M, Zhou Z, Zhu Z, Cao Y. Presence of bone marrow-derived circulating progenitor endothelial cells in the newly formed lymphatic vessels. Blood. 2005; 106(13): 4184-90. https://doi.org/10.1182/blood-2005-01-0226
  • 48. Religa P, Grudzinska MK, Bojakowski K, Soin J, Nozynski J, Zakliczynski M, et al. Host-derived smooth muscle cells accumulate in cardiac allografts: role of inflammation and monocyte chemoattractant protein 1. PLoS One. 2009: 4(1); e4187. https://doi.org/10.1371/journal.pone.0004187
  • 49. Burri PH, Tarek MR. A novel mechanism of capillary growth in the rat pulmonary microcirculation. Anat Rec. 1990; 228(1): 35-45. https://doi.org/10.1002/ar.1092280107
  • 50. Caduff JH, Fischer LC, Burri PH. Scanning electron microscope study of the developing microvasculature in the postnatal rat lung. Anat Rec. 1986; 216(2): 154-64. https://doi.org/10.1002/ar.1092160207
  • 51. Kazi M, Lundmark K, Religa P, Gouda I, Larm O, Ray A, et al. Inhibition of rat smooth muscle cell adhesion and proliferation by non-anticoagulant heparins. J Cell Physiol. 2002; 193(3): 365-72. https://doi.org/10.1002/jcp.10184
  • 52. Religa P, Kazi M, Thyberg J, Gaciong Z, Swedenborg J, Hedin U. Fucoidan inhibits smooth muscle cell proliferation and reduces mitogen-activated protein kinase activity. Eur J Vasc Endovasc Surg. 2000; 20(5): 419-26. https://doi.org/10.1053/ejvs.2000.1220
  • 53. Roy J, Tran PK, Religa P, Kazi M, Henderson B, Lundmark K, et al. Fibronectin promotes cell cycle entry in smooth muscle cells in primary culture. Exp Cell Res. 2002; 273(2): 169-77. https://doi.org/10.1006/excr.2001.5427
  • 54. Hu Y, Zhang Z, Torsney E, Afzal AR, Davison F, Metzler B, et al. Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. J Clin Invest. 2004; 113(9): 1258-65. https://doi.org/10.1172/JCI19628
  • 55. Wilcox JN, Scott NA. Potential role of the adventitia in arteritis and atherosclerosis. International Journal of Cardiology. 1996; 54(Suppl.2): S21-S35. https://doi.org/10.1016/S0167-5273(96)02811-2
  • 56. Ji J, Xu F, Li L, Chen R, Wang J, Hu W-c. Activation of Adventitial Fibroblasts in the Early Stage of the Aortic Transplant Vasculopathy in Rat. Transplantation. 2010; 89(8): 945-953. https://doi.org/10.1097/TP.0b013e3181d05aa7
  • 57. Gibbons GH, Dzau VJ. The Emerging Concept of Vascular Remodeling. New England Journal of Medicine. 1994; 330(20): 1431-1438. https://doi.org/10.1056/NEJM199405193302008
  • 58. Ward MR, Pasterkamp G, Yeung AC, Borst C. Arterial remodeling. Mechanisms and clinical implications. Circulation. 2000; 102(10): 1186-91.https://doi.org/10.1161/01.CIR.102.10.1186
  • 59. Mulvany MJ. The fourth Sir George Pickering memorial lecture. The structure of the resistance vasculature in essential hypertension. J Hypertens. 1987; 5(2): 129-36. https://doi.org/10.1097/00004872-198704000-00001
  • 60. Owens GK. Control of hypertrophic versus hyperplastic growth of vascular smooth-muscle cells. American Journal of Physiology. 1989; 257(6): H1755-H1765. https://doi.org/10.1152/ajpheart.1989.257.6.H1755
  • 61. Baumbach GL, Heistad DD. Remodeling of cerebral arterioles in chronic hypertension. Hypertension. 1989; 13(6): 968-972. https://doi.org/10.1161/01.HYP.13.6.968
  • 62. Greene AS, Tonellato PJ, Lui J, Lombard JH, Cowley AW. Microvascular rarefaction and tissue vascularresistance in hypertension. American Journal of Physiology. 1989: 256(1); H126-H131.
  • 63. Schoenhagen P, Ziada KM, Vince DG, Nissen SE, Tuzcu EM. Arterial remodeling and coronary artery disease: the concept of “dilated” versus “obstructive” coronary atherosclerosis. J Am Coll Cardiol. 2001; 38(2): 297-306. https://doi.org/10.1016/S0735-1097(01)01374-2
  • 64. Wong CY, de Vries MR, Wang Y, van der Vorst JR, Vahrmeijer AL, van Zonneveld AJ, et al. Vascular remodeling and intimal hyperplasia in a novel murine model of arteriovenous fistula failure. J Vasc Surg. 2014; 59(1): 192-201.e1. https://doi.org/10.1016/j.jvs.2013.02.242
  • 65. Langer S, Paulus N, Koeppel TA, Greiner A, Buhl A, Krombach GA, et al. Cardiovascular remodeling during arteriovenous fistula maturation in a rodent uremia model. The Journal of Vascular Access. 2011; 12(3): 215-223. https://doi.org/10.5301/JVA.2010.6066
  • 66. Ananthaseshan S, Grudzinska MK, Bojakowski K, Kurzejamska E, Gaciong Z, Soderberg-Naucler C, et al. Locally Transplanted CD34+ Bone Marrow-Derived Cells Contribute to Vascular Healing After Vascular Injury. Transplant Proc. 2017; 49(6): 1467-1476. https://doi.org/10.1016/j.transproceed.2017.01.081
  • 67. Langille BL, Odonnell F. Reductions in arterial diameter produced by chronic decreases in blood-flow are endothelium-dependent. Science. 1986; 231(4736): 405-407. https://doi.org/10.1126/science.3941904
  • 68. Kovach JA, M.G., Kent KM, et al, Serial intravascular ultrasound studies indicate that chronic recoil is an important mechanism of restenosis following transcatheter therapy, Abstract. J Am Coll Cardiology, 1993.
  • 69. Rohrer, D.M. Vascular Trauma. Society for Vascular Surgery.
  • 70. Toes GJ. Intimal hyperplasia, the obstacle in bypass grafts, in Research Intitute for Neurosciences and Healthy Ageing. Faculty of Medical Sciences 2002, Groningen.
  • 71. Slomp J, van Munsteren JC, Poelmann RE, de Reeder EG, Bogers AJ, Gittenberger-de Groot AC. Formation of intimal cushions in the ductus arteriosus as a model for vascular intimal thickening. An immunohistochemical study of changes in extracellular matrix components. Atherosclerosis. 1992; 93(1-2): 25-39. https://doi.org/10.1016/0021-9150(92)90197-O
  • 72. Hosaka K, Yang Y, Seki T, Fischer C, Dubey O, Fredlund E, et al. Pericyte-fibroblast transition promotes tumor growth and metastasis. Proc Natl Acad Sci U S A. 2016; 113(38): E5618-27. https://doi.org/10.1073/pnas.1608384113
  • 73. Bjorndahl MA, Cao R, Burton JB, Brakenhielm E, Religa P, Galter D, et al. Vascular endothelial growth factor-a promotes peritumoral lymphangiogenesis and lymphatic metastasis. Cancer Res. 2005; 65(20): 9261-8. https://doi.org/10.1158/0008-5472.CAN-04-2345
  • 74. Cao R, Bjorndahl MA, Gallego MI, Chen S, Religa P, Hansen AJ, et al. Hepatocyte growth factor is a lymphangiogenic factor with an indirect mechanism of action. Blood. 2006; 107(9): 3531-6. https://doi.org/10.1182/blood-2005-06-2538
  • 75. Cao R, Bjorndahl MA, Religa P, Clasper S, Garvin S, Galter D. et al. PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell. 2004; 6(4): 333-45. https://doi.org/10.1016/j.ccr.2004.08.034
  • 76. de Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, Forman D, et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. The Lancet Oncology. 2012; 13(6): 607-615. https://doi.org/10.1016/S1470-2045(12)70137-7
  • 77. Institute, N.C., Defining Cancer. June 2014.
  • 78. Taher C, de Boniface J, Mohammad AA, Religa P, Hartman J, Yaiw KC, et al. High prevalence of human cytomegalovirus proteins and nucleic acids in primary breast cancer and metastatic sentinel lymph nodes. PLoS One. 2013; 8(2): e56795. https://doi.org/10.1371/journal.pone.0056795
  • 79. Taher C, Frisk G, Fuentes S, Religa P, Costa H, Assinger A, et al. High prevalence of human cytomegalovirus in brain metastases of patients with primary breast and colorectal cancers. Transl Oncol. 2014; 7(6): 732-40. https://doi.org/10.1016/j.tranon.2014.09.008
  • 80. Siemann DW. The Unique Characteristics of Tumor Vasculature and Preclinical Evidence for its Selective Disruption by Tumor-Vascular Disrupting Agents. Cancer Treatment Reviews. 2011; 37(1): 63-74. https://doi.org/10.1016/j.ctrv.2010.05.001
  • 81. Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ, Jain RK. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res. 2004; 64(11): 3731-6. https://doi.org/10.1158/0008-5472.CAN-04-0074
  • 82. Gaetano Santulli (Columbia University Medical Center, C.o.P.S., Columbia University, New York, NY, USA), Angiogenesis: Insights from a Systematic Overview, 2013.
  • 83. Birbrair A, Zhang T, Wang Z-M, Messi ML, Mintz A, Delbono O. Pericytes at the intersection between tissue regeneration and pathology. Clinical Science. 2015; 128(2): 81-93. https://doi.org/10.1042/CS20140278
  • 84. Penn J. (ed.). Retinal and Choroidal Angiognesis, Springer; 2008. https://doi.org/10.1007/978-1-4020-6780-8
  • 85. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971; 285(21): 1182-6. https://doi.org/10.1056/NEJM197111182852108
  • 86. Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev. 2004; 25(4): 581-611. https://doi.org/10.1210/er.2003-0027
  • 87. Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol. 2005; 23(5): 1011-27. https://doi.org/10.1200/JCO.2005.06.081
  • 88. Holmgren L, O’Reilly MS, Folkman J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med. 1995; 1(2): 149-53. https://doi.org/10.1038/nm0295-149
  • 89. Zetter PBR. Angiogenesis and tumor metastasis. Annual Review of Medicine. 1998; 49(1): 407-424. https://doi.org/10.1146/annurev.med.49.1.407
  • 90. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000; 407(6801): 249-57. https://doi.org/10.1038/35025220
  • 91. Dor Y, Porat R, Keshet E. Vascular endothelial growth factor and vascular adjustments to perturbations in oxygen homeostasis. Am J Physiol Cell Physiol. 2001; 280(6): C1367-74. https://doi.org/10.1152/ajpcell.2001.280.6.C1367
  • 92. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature. 2000; 407(6801): 242-8. https://doi.org/10.1038/35025215
  • 93. Gu JW, Adair TH. Hypoxia-induced expression of VEGF is reversible in myocardial vascular smooth muscle cells. Am J Physiol. 1997; 273(2 Pt 2): H628-33. https://doi.org/10.1152/ajpheart.1997.273.2.H628
  • 94. Ferrara N. Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am J Physiol Cell Physiol. 2001; 280(6): C1358-66. https://doi.org/10.1152/ajpcell.2001.280.6.C1358
  • 95. Tscheudschilsuren G, Aust G, Nieber K, Schilling N, Spanel-Borowski K. Microvascular endothelial cells differ in basal and hypoxia-regulated expression of angiogenic factors and their receptors. Microvasc Res. 2002; 63(3): 243-51. https://doi.org/10.1006/mvre.2001.2346
  • 96. Gerber HP, Condorelli F, Park J, Ferrara N. Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes. Flt-1, but not Flk-1/KDR, is up-regulated by hypoxia. J Biol Chem. 1997; 272(38): 23659-67. https://doi.org/10.1074/jbc.272.38.23659
  • 97. Tuder RM, Flook BE, Voelkel NF. Increased gene expression for VEGF and the VEGF receptors KDR/Flk and Flt in lungs exposed to acute or to chronic hypoxia. Modulation of gene expression by nitric oxide. J Clin Invest. 1995; 95(4): 1798-807. https://doi.org/10.1172/JCI117858
  • 98. Stimpfl M, Tong D, Fasching B, Schuster E, Obermair A, Leodolter S, et al. Vascular endothelial growth factor splice variants and their prognostic value in breast and ovarian cancer. Clin Cancer Res. 2002; 8(7): 2253-9.
  • 99. Xue Y, Religa P, Cao R, Hansen AJ, Lucchini F, Jones B, et al. Anti-VEGF agents confer survival advantages to tumor-bearing mice by improving cancer-associated systemic syndrome. Proc Natl Acad Sci U S A. 2008; 105(47): 18513-8. https://doi.org/10.1073/pnas.0807967105
  • 100. Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, et al. Genetic alterations during colorectal-tumor development. N Engl J Med. 1988; 319(9): 525-32. https://doi.org/10.1056/NEJM198809013190901
  • 101. Blazejczyk A, Papiernik D, Porshneva K, Sadowska J, Wietrzyk J. Endothelium and cancer metastasis: Perspectives for antimetastatic therapy. Pharmacological Reports. 2015; 67(4): 711-718. https://doi.org/10.1016/j.pharep.2015.05.014
  • 102. Endemann DH, Schiffrin EL. Endothelial Dysfunction. Journal of the American Society of Nephrology. 2004; 15(8): 1983-1992. https://doi.org/10.1097/01.ASN.0000132474.50966.DA
  • 103. Liao JK. Linking endothelial dysfunction with endothelial cell activation. The Journal of Clinical Investigation. 2013; 123(2): 540-541. https://doi.org/10.1172/JCI66843
  • 104. Shing Y, Folkman J, Sullivan R, Butterfield C, Murray J, Klagsbrun M, Heparin affinity: purification of a tumor-derived capillary endothelial cell growth factor. Science. 1984; 223(4642): 1296-9. https://doi.org/10.1126/science.6199844
  • 105. Vaupel P, Fortmeyer HP, Runkel S, Kallinowski F. Blood flow, oxygen consumption, and tissue oxygenation of human breast cancer xenografts in nude rats. Cancer Res. 1987; 47(13): 3496-503.
  • 106. Sidky YA, Auerbach R. Lymphocyte-induced angiogenesis in tumor-bearing mice. Science. 1976; 192(4245): 1237-8. https://doi.org/10.1126/science.5775
  • 107. Butler TP, Gullino PM. Quantitation of cell shedding into efferent blood of mammary adenocarcinoma. Cancer Res. 1975; 35(3): 512-6.
  • 108. Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis--correlation in invasive breast carcinoma. N Engl J Med. 1991; 324(1): 1-8. https://doi.org/10.1056/NEJM199101033240101
  • 109. Jeltsch M, Tammela T, Alitalo K, Wilting J. Genesis and pathogenesis of lymphatic vessels. Cell and Tissue Research. 2003; 314(1): 69-84. https://doi.org/10.1007/s00441-003-0777-2
  • 110. Stacker SA. July 2009.
  • 111. Christiansen A, Detmar M. Lymphangiogenesis and Cancer. Genes & Cancer. 2011; 2(12): 1146-1158. https://doi.org/10.1177/1947601911423028
  • 112. Baluk P, Fuxe J, Hashizume H, Romano T, Lashnits E, Butz S, et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J Exp Med. 2007; 204(10): 2349-62. https://doi.org/10.1084/jem.20062596
  • 113. Tammela T, Alitalo K. Lymphangiogenesis: Molecular mechanisms and future promise. Cell. 2010; 140(4): 460-76. https://doi.org/10.1016/j.cell.2010.01.045
  • 114. Cueni LN, Detmar M. New insights into the molecular control of the lymphatic vascular system and its role in disease. J Invest Dermatol. 2006; 126(10): 2167-77. https://doi.org/10.1038/sj.jid.5700464
  • 115. Wang Y, Oliver G. Current views on the function of the lymphatic vasculature in health and disease. Genes Dev. 2010; 24(19): 2115-26. https://doi.org/10.1101/gad.1955910
  • 116. Swartz MA, Skobe M. Lymphatic function, lymphangiogenesis, and cancer metastasis. Microsc Res Tech. 2001; 55(2): 92-9. https://doi.org/10.1002/jemt.1160
  • 117. Kajiya K, Hirakawa S, Ma B, Drinnenberg I, Detmar M. Hepatocyte growth factor promotes lymphatic vessel formation and function. Embo J. 2005; 24(16): 2885-95. https://doi.org/10.1038/sj.emboj.7600763
  • 118. Kubo H, Cao R, Brakenhielm E, Makinen T, Cao Y, Alitalo K. Blockade of vascular endothelial growth factor receptor-3 signaling inhibits fibroblast growth factor-2-induced lymphangiogenesis in mouse cornea. Proc Natl Acad Sci U S A. 2002; 99(13): 8868-73. https://doi.org/10.1073/pnas.062040199
  • 119. Chang LK, Garcia-Cardena G, Farnebo F, Fannon M, Chen EJ, Butterfield C, et al. Dose-dependent response of FGF-2 for lymphangiogenesis. Proc Natl Acad Sci U S A. 2004; 101(32): 11658-63. https://doi.org/10.1073/pnas.0404272101
  • 120. Shin JW, Min M, Larrieu-Lahargue F, Canron X, Kunstfeld R, Nguyen L, et al. Prox1 promotes lineage-specific expression of fibroblast growth factor (FGF) receptor-3 in lymphatic endothelium: a role for FGF signaling in lymphangiogenesis. Mol Biol Cell. 2006; 17(2): 576-84. https://doi.org/10.1091/mbc.e05-04-0368
  • 121. Neuchrist C, Erovic BM, Handisurya A, Fischer MB, Steiner GE, Hollemann D, et al. Vascular endothelial growth factor C and vascular endothelial growth factor receptor 3 expression in squamous cell carcinomas of the head and neck. Head Neck. 2003; 25(6): 464-74. https://doi.org/10.1002/hed.10235
  • 122. Mohammed RA, Green A, El-Shikh S, Paish EC, Ellis IO, Martin SG. Prognostic significance of vascular endothelial cell growth factors -A, -C and -D in breast cancer and their relationship with angio- and lymphangiogenesis. Br J Cancer. 2007; 96(7): 1092-100. https://doi.org/10.1038/sj.bjc.6603678
  • 123. Schoppmann SF, Fenzl A, Nagy K, Unger S, Bayer G, Geleff S, et al. VEGF-C expressing tumor-associated macrophages in lymph node positive breast cancer: impact on lymphangiogenesis and survival. Surgery. 2006; 139(6): 839-46. https://doi.org/10.1016/j.surg.2005.12.008
  • 124. Wartiovaara U, Salven P, Mikkola H, Lassila R, Kaukonen J, Joukov V, et al. Peripheral blood platelets express VEGF-C and VEGF which are released during platelet activation. Thromb Haemost. 1998; 80(1): 171-5. https://doi.org/10.1055/s-0037-1615158
  • 125. Cinatl J, Vogel J-U, Kotchetkov R, Wilhelm Doerr H. Oncomodulatory signals by regulatory proteins encoded by human cytomegalovirus: a novel role for viral infection in tumor progression. FEMS Microbiology Reviews. 2004; 28(1): 59-77. https://doi.org/10.1016/j.femsre.2003.07.005
  • 126. Krebs MG, Hou J-M, Ward TH, Blackhall FH, Dive C. Circulating tumour cells: their utility in cancer management and predicting outcomes. Therapeutic Advances in Medical Oncology. 2010; 2(6): 351-365. https://doi.org/10.1177/1758834010378414
  • 127. Scholz M, Blaheta RA, Vogel J, Doerr HW, Cinatl Jr. J. Cytomegalovirus-induced transendothelial cell migration. a closer look at intercellular communication mechanisms. Intervirology. 1999; 42(5-6): 350-6. https://doi.org/10.1159/000053971
  • 128. Streblow DN, Soderberg-Naucler C, Vieira J, Smith P, Wakabayashi E, Ruchti F, et al. The Human Cytomegalovirus Chemokine Receptor US28 Mediates Vascular Smooth Muscle Cell Migration. Cell. 1999; 99(5): 511-520. https://doi.org/10.1016/S0092-8674(00)81539-1
  • 129. Mohme M, Riethdorf S, Pantel K. Circulating and disseminated tumour cells [mdash] mechanisms of immune surveillance and escape. Nat Rev Clin Oncol. 2017; 14: 155-167. https://doi.org/10.1038/nrclinonc.2016.144
  • 130. Burnet FM. The concept of immunological surveillance. Prog Exp Tumor Res. 1970; 13: 1-27. https://doi.org/10.1159/000386035
  • 131. Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol. 2004; 22: 329-60. https://doi.org/10.1146/annurev.immunol.22.012703.104803
  • 132. Corthay A. Does the immune system naturally protect against cancer? Front Immunol. 2014; 5: 197. https://doi.org/10.3389/fimmu.2014.00197
  • 133. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002; 3(11): 991-8. https://doi.org/10.1038/ni1102-991
  • 134. Koebel CM, Vermi W, Swann JB, Zerafa N, Rodig SJ, Old LJ, et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature. 2007; 450(7171): 903-7. https://doi.org/10.1038/nature06309
  • 135. Teng MW, Swann JB, Koebel CM, Schreiber RD, Smyth MJ. Immune-mediated dormancy: an equilibrium with cancer. J Leukoc Biol. 2008; 84(4): 988-93. https://doi.org/10.1189/jlb.1107774
  • 136. Dunn GP, Koebel CM, Schreiber RD. Interferons, immunity and cancer immunoediting. Nat Rev Immunol. 2006; 6(11): 836-48. https://doi.org/10.1038/nri1961
  • 137. Oleinika K, Nibbs RJ, Graham GJ, Fraser AR. Suppression, subversion and escape: the role of regulatory T cells in cancer progression. Clin Exp Immunol. 2013; 171(1): 36-45. https://doi.org/10.1111/j.1365-2249.2012.04657.x
  • 138. Facciabene A, Motz GT, Coukos G. T-regulatory cells: key players in tumor immune escape and angiogenesis. Cancer Res. 2012; 72(9): 2162-71. https://doi.org/10.1158/0008-5472.CAN-11-3687
  • 139. Artis D, Spits H. The biology of innate lymphoid cells. Nature. 2015; 517(7534): 293-301. https://doi.org/10.1038/nature14189
  • 140. Green TL, Cruse JM, Lewis RE, Craft BS. Circulating tumor cells (CTCs) from metastatic breast cancer patients linked to decreased immune function and response to treatment. Exp Mol Pathol. 2013; 95(2): 174-9. https://doi.org/10.1016/j.yexmp.2013.06.013
  • 141. Santos MF, Mannam VK, Craft BS, Puneky LV, Sheehan NT, Lewis RE, et al. Comparative analysis of innate immune system function in metastatic breast, colorectal, and prostate cancer patients with circulating tumor cells. Exp Mol Pathol. 2014; 96(3): 367-74. https://doi.org/10.1016/j.yexmp.2014.04.001
  • 142. Gul N, Babes L, Siegmund K, Korthouwer R, Bogels M, Braster R, et al. Macrophages eliminate circulating tumor cells after monoclonal antibody therapy. J Clin Invest. 2014; 124(2): 812-23. https://doi.org/10.1172/JCI66776
  • 143. Gul N, Babes L, Kubes P, van Egmond M. Macrophages in the liver prevent metastasis by efficiently eliminating circulating tumor cells after monoclonal antibody immunotherapy. Oncoimmunology. 2014; 3: e28441. https://doi.org/10.4161/onci.28441
  • 144. Bayon LG, Izquierdo MA, Sirovich I, van Rooijen N, Beelen RH, Meijer S. Role of Kupffer cells in arresting circulating tumor cells and controlling metastatic growth in the liver. Hepatology. 1996; 23(5): 1224-31. https://doi.org/10.1002/hep.510230542
  • 145. Chang YS, di Tomaso E, McDonald DM, Jones R, Jain RK, Munn LL. Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proc Natl Acad Sci U S A. 2000; 97(26): 14608-13. https://doi.org/10.1073/pnas.97.26.14608
  • 146. Dranoff G, D.M.a. Current Protocols in Immunology Coico. R, Editor. Wiley; 2009.
  • 147. Aptsiauri N, Cabrera T, Mendez R, Garcia-Lora A, Ruiz-Cabello F, Garrido F. Role of altered expression of HLA class I molecules in cancer progression. Adv Exp Med Biol. 2007; 601: 123-31. https://doi.org/10.1007/978-0-387-72005-0_13
  • 148. Waldhauer I, Steinle A. NK cells and cancer immunosurveillance. Oncogene. 2008; 27(45): 5932-43.
  • 149. https://doi.org/10.1038/onc.2008.267
  • 150. Pantel K, Schlimok G, Kutter D, Schaller G, Genz T, Wiebecke B, et al. Frequent down-regulation of major histocompatibility class I antigen expression on individual micrometastatic carcinoma cells. Cancer Res. 1991; 51(17): 4712-5.
  • 151. Wu MS, Li CH, Ruppert JG, Chang CC. Cytokeratin 8-MHC class I interactions: a potential novel immune escape phenotype by a lymph node metastatic carcinoma cell line. Biochem Biophys Res Commun. 2013; 441(3): 618-23. https://doi.org/10.1016/j.bbrc.2013.10.105
  • 152. Moll R, Franke WW, Schiller DL, Geiger B, Krepler R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell. 1982; 31(1): 11-24. https://doi.org/10.1016/0092-8674(82)90400-7
  • 153. Owen-Schaub L, Chan H, Cusack JC, Roth J, Hill LL. Fas and Fas ligand interactions in malignant disease. Int J Oncol, 2000. 17(1). 5-12.
  • 154. Terheyden P, Siedel C, Merkel A, Kampgen E, Brocker EB, Becker JC. Predominant expression of Fas (CD95) ligand in metastatic melanoma revealed by longitudinal analysis. J Invest Dermatol. 1999; 112(6): 899-902. https://doi.org/10.1046/j.1523-1747.1999.00607.x
  • 155. Nozoe T, Yasuda M, Honda M, Inutsuka S, Korenaga D. Fas ligand expression is correlated with metastasis in colorectal carcinoma. Oncology, 2003. 65(1). 83-8. https://doi.org/10.1159/000071208
  • 156. Gutierrez LS, Eliza M, Niven-Fairchild T, Naftolin F, Mor G. The Fas/Fas-ligand system: a mechanism for immune evasion in human breast carcinomas. Breast Cancer Res Treat. 1999; 54(3): 245-53. https://doi.org/10.1023/A:1006102601215
  • 157. Strand S, Hofmann WJ, Hug H, Muller M, Otto G, Strand D, et al. Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells--a mechanism of immune evasion? Nat Med. 1996; 2(12): 1361-6. https://doi.org/10.1038/nm1296-1361
  • 158. Chao MP, Majeti R, Weissman IL. Programmed cell removal: a new obstacle in the road to developing cancer. Nat Rev Cancer. 2011; 12(1): 58-67. https://doi.org/10.1038/nrc3171
  • 159. Jaiswal S, C.H. Jamieson W.W. Pang C.Y. Park M.P. Chao R. Majeti, et al., CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell. 2009; 138(2): 271-85. https://doi.org/10.1016/j.cell.2009.05.046
  • 160. Steinert G, Scholch S, Niemietz T, Iwata N, Garcia SA, Behrens B, et al. Immune escape and survival mechanisms in circulating tumor cells of colorectal cancer. Cancer Res. 2014; 74(6): 1694-704. https://doi.org/10.1158/0008-5472.CAN-13-1885
  • 161. Chao MP, Tang C, Pachynski RK, Chin R, Majeti R, Weissman IL. Extranodal dissemination of non-Hodgkin lymphoma requires CD47 and is inhibited by anti-CD47 antibody therapy. Blood. 2011; 118(18): 4890-901. https://doi.org/10.1182/blood-2011-02-338020
  • 162. Baccelli I, Schneeweiss A, Riethdorf S, Stenzinger A, Schillert A, Vogel V, et al. Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol. 2013; 31(6): 539-44. https://doi.org/10.1038/nbt.2576
  • 163. Baccelli I, A. Stenzinger V. Vogel B.M. Pfitzner C. Klein M. Wallwiener, et al., Co-expression of MET and CD47 is a novel prognosticator for survival of luminal breast cancer patients. Oncotarget. 2014; 5(18): 8147-60. https://doi.org/10.18632/oncotarget.2385
  • 164. Noman MZ, Messai Y, Muret J, Hasmim M, Chouaib S. Crosstalk between CTC, Immune System and Hypoxic Tumor Microenvironment. Cancer Microenviron. 2014; 7(3): 153-60. https://doi.org/10.1007/s12307-014-0157-3
  • 165. Kallergi G, Markomanolaki H, Giannoukaraki V, Papadaki MA, Strati A, Lianidou ES, et al. Hypoxia-inducible factor-1alpha and vascular endothelial growth factor expression in circulating tumor cells of breast cancer patients. Breast Cancer Res. 2009; 11(6): R84. https://doi.org/10.1186/bcr2452
  • 166. Bartkowiak K, Kwiatkowski M, Buck F, Gorges TM, Nilse L, Assmann V, et al. Disseminated Tumor Cells Persist in the Bone Marrow of Breast Cancer Patients through Sustained Activation of the Unfolded Protein Response. Cancer Res. 2015; 75(24): 5367-77. https://doi.org/10.1158/0008-5472.CAN-14-3728
  • 167. Jakobisiak M, Lasek W, Golab J. Natural mechanisms protecting against cancer. Immunol Lett. 2003; 90(2-3): 103-22. https://doi.org/10.1016/j.imlet.2003.08.005
  • 168. Smith HA, Kang Y. The metastasis-promoting roles of tumor-associated immune cells. J Mol Med (Berl). 2013; 91(4): 411-29. https://doi.org/10.1007/s00109-013-1021-5
  • 169. Kitamura T, Qian BZ, Pollard JW. Immune cell promotion of metastasis. Nat Rev Immunol. 2015; 15(2): 73-86. https://doi.org/10.1038/nri3789
  • 170. Taranova AG, Maldonado D, Vachon CM, Jacobsen EA, Abdala-Valencia H, McGarry MP, et al. Allergic pulmonary inflammation promotes the recruitment of circulating tumor cells to the lung. Cancer Res. 2008; 68(20): 8582-9. https://doi.org/10.1158/0008-5472.CAN-08-1673
  • 171. Tseng JY, Yang CY, Liang SC, Liu RS, Yang SH, Lin JK, et al. Interleukin-17A modulates circulating tumor cells in tumor draining vein of colorectal cancers and affects metastases. Clin Cancer Res. 2014; 20(11): 2885-97. https://doi.org/10.1158/1078-0432.CCR-13-2162
  • 172. Johansson J, Berg T, Kurzejamska E, Pang MF, Tabor V, Jansson M, et al. MiR-155-mediated loss of C/EBPbeta shifts the TGF-beta response from growth inhibition to epithelial-mesenchymal transition, invasion and metastasis in breast cancer. Oncogene. 2013; 32(50): 5614-24. https://doi.org/10.1038/onc.2013.322
  • 173. Kurzejamska E, Johansson J, Jirstrom K, Prakash V, Ananthaseshan S, Boon L, et al. C/EBPbeta expression is an independent predictor of overall survival in breast cancer patients by MHCII/CD4-dependent mechanism of metastasis formation. Oncogenesis. 2014; 3: e125. https://doi.org/10.1038/oncsis.2014.38
  • 174. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. The Journal of Clinical Investigation. 2009; 119(6): 1420-1428. https://doi.org/10.1172/JCI39104
  • 175. Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, et al. Identification of Selective Inhibitors of Cancer Stem Cells by High-Throughput Screening. Cell. 2009; 138(4): 645-659. https://doi.org/10.1016/j.cell.2009.06.034
  • 176. Massagué J. TGFβ in Cancer. Cell. 2008; 134(2): 215-230. https://doi.org/10.1016/j.cell.2008.07.001
  • 177. Kong D, Li Y, Wang Z, Sarkar FH. Cancer Stem Cells and Epithelial-to-Mesenchymal Transition (EMT)-Phenotypic Cells: Are They Cousins or Twins? Cancers. 2011; 3(1): 716-729. https://doi.org/10.3390/cancers30100716
  • 178. Scheel C, Weinberg RA. Cancer stem cells and epithelial–mesenchymal transition: Concepts and molecular links. Seminars in Cancer Biology. 2012; 22(5–6): 396-403. https://doi.org/10.1016/j.semcancer.2012.04.001
  • 179. Vicovac L, Aplin JD. Epithelial-mesenchymal transition during trophoblast differentiation. Acta Anat (Basel). 1996; 156(3): 202-16. https://doi.org/10.1159/000147847
  • 180. Argiles JM, Busquets S, Stemmler B, Lopez-Soriano FJ. Cancer cachexia: understanding the molecular basis. Nat Rev Cancer. 2014; 14(11): 754-762. https://doi.org/10.1038/nrc3829
  • 181. WARREN S. The immediate causes of death in cancer. The American Journal of the Medical Sciences. 1932; 184(5): 610-615. https://doi.org/10.1097/00000441-193211000-00002
  • 182. Argiles JM, Busquets S, Garcia-Martinez C, Lopez-Soriano FJ. Mediators involved in the cancer anorexiacachexia syndrome: past, present, and future. Nutrition. 2005; 21(9): 977-85. https://doi.org/10.1016/j.nut.2005.02.003
  • 183. Matthys P, Billiau A. Cytokines and cachexia. Nutrition. 1997; 13(9): 763-70.
  • 184. Fearon KC, Voss AC, Hustead DS. Definition of cancer cachexia: effect of weight loss, reduced food intake, and systemic inflammation on functional status and prognosis. Am J Clin Nutr. 2006; 83(6): 1345-50.
  • 185. Bojakowski K, Dzabic M, Kurzejamska E, Styczynski G, Andziak P, Gaciong Z, et al. A high red blood cell distribution width predicts failure of arteriovenous fistula. PLoS One. 2012; 7(5): e36482. https://doi.org/10.1371/journal.pone.0036482
  • 186. Dzabic M, Bojakowski K, Kurzejamska E, Styczynski G, Andziak P, Soderberg-Naucler C, et al. Significance of cytomegalovirus infection in the failure of native arteriovenous fistula. Clin Microbiol Infect. 2012; 18(1): E5-7. https://doi.org/10.1111/j.1469-0691.2011.03691.x
  • 187. Butler LM, Dzabic M, Bakker F, Davoudi B, Jeffery H, Religa P, et al. Human cytomegalovirus inhibits erythropoietin production. J Am Soc Nephrol. 2014; 25(8): 1669-78. https://doi.org/10.1681/ASN.2013101125
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-1233af0e-ef5f-4955-986e-f8fbeb4890c3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.