Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 59 | 1 |

Tytuł artykułu

Osteological correlates for quadrupedality in ornithischian dinosaurs

Treść / Zawartość

Warianty tytułu

Języki publikacji



The evolution of quadrupedality from bipedal ancestors is an exceptionally rare transition in tetrapod evolution, but it has occurred several times within the herbivorous dinosaur clade Ornithischia. Stegosauria, Ankylosauria, and Ceratopsidae are all uncontroversially quadrupedal, while basal ornithischians and basal ornithopods are uncontroversially bipedal. However, stance in iguanodontian ornithopods, including the hadrosaurs, and in non-ceratopsid ceratopsians is debated because robust osteological correlates of quadrupedality have not been identified. We examine a suite of characteristics that have been previously proposed as osteological correlates for bipedality or quadrupedality in dinosaurs. These include both discrete anatomical features, which we assess as correlates for quadrupedality using character optimization onto a composite cladogram, and proportional ratios, which we assess as correlates by reconstructing nodal ancestral states using squared-change parsimony, followed by optimization. We also examine the correlation of these features with body size. An anterolateral process on the proximal ulna, hoof-shaped manual unguals, a transversely broadened ilium, a reduced fourth trochanter and a femur longer than the tibia are found to be robust correlates of quadrupedality in ornithischian dinosaurs. Along the ceratopsid “stem” lineage, quadrupedal characters were acquired in a stepwise fashion, with forelimb characters developing prior to changes in the hind limb. In contrast, iguanodontid ornithopods display a mosaic of character states, indicating varying degrees of facultative quadrupedality that probably arose for a variety of different reasons. Hadrosaurs are found to possess all character states associated with quadrupedality and were probably predominantly quadrupedal. In general, quadrupedal ornithischians do not appear to have been constrained by their bipedal ancestry to a particular order of character acquisition.

Słowa kluczowe








Opis fizyczny



  • Department of Earth Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, U.K.
  • Department of Earth Science and Engineering, Imperial College, South Kensington Campus, London SW7 2AZ, U.K.
  • Department of Earth Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, U.K.


  • Alexander, R.M.N. 1985. Mechanics of posture and gait of some large dinosaurs. Zoological Journal of the Linnean Society 83: 1–25.
  • Bates, K.T., Falkingham, P.L., Breithaupt, B.H., Hodgetts, D., Sellers, W.I., and Manning, P.L. 2009a. How big was “Big Al”? Quantifying the effect of soft tissue and osteological unknowns on mass predictions for Allosaurus (Dinosauria: Theropoda). Palaeontologica Electronica 12: 14A, 33 pp.
  • Bates, K.T., Manning, P.L., Hodgetts, D., and Sellers, W.I. 2009b. Estimating mass properties of dinosaurs using laser imaging and 3D computer modelling. PLOS One 4: e4532.
  • Beckles, S.H. 1862. On some natural casts of reptilian footprints in the Wealden beds of the Isle of Wight and Swanage. Quarterly Journal of the Geological Society of London 18: 443–447.
  • Biewener, A.A. 1989. Scaling body support in mammals: limb posture and muscle mechanics. Science 245: 45–48.
  • Bonnan, M.F. 2003. The evolution of manus shape in sauropod dinosaurs: implications for functional morphology, forelimb orientation, and phylogeny. Journal of Vertebrate Paleontology 23: 595–613.
  • Brown, C.M., Boyd, C.A., and Russell, A.P. 2011. A new basal ornithopod dinosaur (Frenchman Formation, Saskatchewan, Canada), and implications for late Maastrichtian ornithischian diversity in North America. Zoological Journal of the Linnean Society 163: 1157–1198.
  • Butler, R.J., Upchurch, P., and Norman, D.B. 2008. The phylogeny of the ornithischian dinosaurs. Journal of Systematic Palaeontology 6: 1–40.
  • Butler, R.J., Galton, P.M., Porro, L.B., Chiappe, L.M., and Henderson, D.M. 2010. Lower limits of ornithischian dinosaur body size inferred from a new Upper Jurassic heterodontosauid from North America. Proceedings of the Royal Society of London B: Biological Sciences 277: 375–381.
  • Campione, N.E. and Evans, D.C. 2012. A universal scaling relationship between boy mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods. BMC Biology 10: 60.
  • Carpenter, K. and Wilson, Y. 2008. A new species of Camptosaurus (Ornithopoda: Dinosauria) from the Morrison Formation (Upper Jurassic) of Dinosaur National Monument, Utah, and a biomechanical analysis of its forelimb. Annals of the Carnegie Museum of Natural History 76: 227–265.
  • Carrano, M.T. 1999. What, if anything, is a cursor? Categories versus continua for determining locomotor habit in mammals and dinosaurs. Journal of Zoology, London 247: 29–42.
  • Carrano, M.T. 2001. Implications of limb bone scaling, curvature and eccentricity in mammals and non-avian dinosaurs. Journal of Zoology, London 254: 41–55.
  • Carrano, M.T. and Hutchinson, J.R. 2002. Pelvic and hindlimb musculature of Tyrannosaurus rex (Dinosauria: Theropoda). Journal of Morphology 253: 207–228.
  • Chinnery, B.J. 2004. Morphometric analysis of evolutionary trends in the ceratopsian postcranial skeleton. Journal of Vertebrate Paleontology 24: 591–609.
  • Colbert, E.H. 1964. Relationships of the saurischian dinosaurs. American Museum Novitates 2181: 1–24.
  • Colbert, E.H. 1981. A primitive ornithischian dinosaur from the Kayenta Formation of Arizona. Bulletin of the Museum of Northern Arizona 53: 1–61.
  • Coombs, W.P. 1978a. The families of the ornithischian dinosaur order Ankylosauria. Palaeontology 21: 143–170.
  • Coombs, W.P. 1978b. Theoretical aspects of cursorial adaptations in dinosaurs. The Quarterly Review of Biology 53: 393–418.
  • Cope, E.D. 1869. Remarks on fossil reptiles. Proceedings of the American Philosophical Society 11: 16.
  • Dilkes, D.W. 2001. An ontogenetic perspective on locomotion in the Late Cretaceous dinosaur Maiasaura peeblesorum (Ornithischia: Hadrosauridae). Canadian Journal of Earth Sciences 38: 1205–1227.
  • Dodson, P., Forster, C.A., and Sampson, S.D. 2004. Ceratopsidae. In: D.B. Weishampel, P. Dodson, and H. Osmólska (eds.), The Dinosauria (second edition), 478–493. University of California Press, Berkeley.
  • Dollo, L. 1883. Troisième note sur les dinosauriens de Bernissart. Bulletin du Musée Royal d’Histoire Naturelle de Belgique 2: 86–120.
  • Dollo, L. 1888 Sur la significance du “trochanter pendant” des dinosauriens. Bulletin Scientifique de le France et de la Belgique 8: 215–224.
  • Dollo, L. 1905. Les dinosauriens adaptés à la vie quadrupède secondaire. Mémoires de la Société Belge du Géologie 19: 441–448.
  • Farke, A.A., Ryan, M.J., Barrett, P.M., Tanke, D.H., Bramen, D.R., Loewen, M.A., and Graham, M.R. 2011. A new centrosaurine from the Late Cretaceous of Alberta, Canada, and the evolution of parietal ornamentation in horned dinosaurs. Acta Palaeontologica Polonica 56: 691–702.
  • Galton, P.M. 1970. The posture of hadrosaurian dinosaurs. Journal of Paleontology 44: 464–473.
  • Galton, P.M. 1971. Hypsilophodon, the cursorial non-arboreal dinosaur. Nature 231: 159–161.
  • Galton, P.M. and Upchurch, P. 2004. Stegosauria. In: D.B. Weishampel, P. Dodson, and H. Osmólska (eds.), The Dinosauria (second edition), 343–362. University of California Press, Berkeley.
  • Garland, T., Jr. and Janis, C.M. 1993 Does metatarsal/femur ratio predict maximal running speed in cursorial mammals? Journal of Zoology, London 229: 133–151.
  • Gatesy, S.M. 1990. Caudofemoral musculature and the evolution of theropod locomotion. Paleobiology 16: 170–186.
  • Gilmore, C.W. 1909. Osteology of the Jurassic reptile Camptosaurus, with a revision of the species of the genus, and descriptions of two new species. Proceedings of the United States National Museum 36: 197–332.
  • Hammer, Ø., Harper, D.A.T., and Ryan, P.D. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologica Electronica 4 (1): 1–9.
  • Henderson, D.M. 1999. Estimating the masses and centers of mass of extinct animals by 3-D mathematical slicing. Paleobiology 25: 88–106.
  • Henderson, D.M. 2006. Burly gaits: centers of mass, stability and the track ways of sauropod dinosaurs. Journal of Vertebrate Paleontology 24: 907–921.
  • Hildebrand, M. 1985. Walking and running. In: M. Hildebrand, D.M. Bramble, K. Liem, and D.B. Wake (eds.), Functional Vertebrate Morphology, 38–57. The Belknap Press, Cambridge.
  • Horner, J.R., Weishampel, D.B., and Forster, C.A. 2004. Hadrosauridae. In: D.B. Weishampel, P. Dodson, and H. Osmólska (eds.), The Dinosauria (second edition), 438–463. University of California Press, Berkeley.
  • Hutchinson, J.R. 2001. The evolution of pelvic osteology and soft tissues on the line to extant birds (Neornithes). Zoological Journal of the Linnean Society 131: 123–168.
  • Hutchinson, J.R. 2005. Dinosaur locomotion. In: Encyclopedia of Life Sciences, 7 pp. Macmillan, London.
  • Huxley, T.H. 1870. Further evidence of the affinity between the dinosaurian reptiles and birds. Quarterly Journal of the Geological Society of London 26: 12–31.
  • Lanyon, L.E. and Rubin, C.T. 1985. Functional adaptation in skeletal structures. In: M. Hildebrand, D.M. Bramble, K. Liem, and D.B. Wake (eds.), Functional Vertebrate Morphology, 1–25. The Belknap Press, Cambridge.
  • Leidy, J. 1858. Hadrosaurus foulki, a new saurian from the Cretaceous of New Jersey. Proceedings of the Academy of Natural Sciences of Philadelphia 10: 213–222.
  • Lockley, M.G. and Wright, J.L. 2001. Trackways of large quadrupedal ornithopods from the Cretaceous: a review. In: D.H. Tanke and K. Carpenter (eds.), Mesozoic Vertebrate Life, 428–442. Indiana University Press, Bloomington.
  • Lockley, M.G. and Hunt, A.P. 1995 Ceratopsid tracks and associated ichnofauna from the Laramie Formation (Upper Cretaceous: Maastrichtian) of Colorado. Journal of Vertebrate Paleontology 15: 592–614.
  • Lockley, M., Garcia-Ramos, J.C., Pinuela, L., and Avanzini, M. 2008. A review of vertebrate track assemblages from the Late Jurassic of Asturias, Spain with comparative notes on coeval ichnofaunas from the western USA: implications for faunal diversity in siliciclastic facies assemblages. Oryctos 8: 53–70.
  • Maddison, W.P. 1991. Squared-change parsimony reconstructions of ancestral states for continuous-valued characters on a phylogenetic tree. Systematic Zoology 40: 304–314.
  • Maddison, D.R. and Maddison, W.P. 2003. MacClade 4: Analysis of Phylogeny and Character Evolution. Version 4.06. Sinauer Associates, Sunderland.
  • Maidment, S.C.R. 2010. Stegosauria: a historical review of the body fossil record and phylogenetic relationships. Swiss Journal of Geosciences 103: 199–210.
  • Maidment, S.C.R. and Barrett, P.M. 2011 The locomotor musculature of basal ornithischian dinosaurs. Journal of Vertebrate Paleontology 31: 1265–1291.
  • Maidment, S.C.R. and Barrett, P.M. 2012. Does morphological convergence imply functional similarity? A test using the evolution of quadrupedalism in ornithischian dinosaurs. Proceedings of the Royal Society of London B: Biological Sciences 279: 3765–3771.
  • Maidment, S.C.R., Bates, K.T., and Barrett, P.M. (in press). Three-dimensional computational modeling of pelvic locomotor muscle moment arms in Edmontosaurus (Dinosauria, Hadrosauridae) and comparisons with other archosaurs. In: D.C. Evans and D.A. Eberth (eds.), Hadrosaurs. Indiana University Press, Bloomington.
  • Maidment, S.C.R., Linton, D.H., Upchurch, P., and Barrett, P.M. 2012. Limb bone scaling indicates diverse stance and gait in quadrupedal ornithischian dinosaurs. PLoS One 7 (5): e36904.
  • Maidment, S.C.R., Norman, D.B., Barrett, P.M. and Upchurch, P. 2008. Systematics and phylogeny of Stegosauria (Dinosauria: Ornithischia). Journal of Systematic Palaeontology 6: 364–407.
  • McCrea, R.T., Lockley, M.G., and Meyer, C.A. 2001 Global distribution of purported ankylosaur track occurrences. In: K. Carpenter (ed.), The Armored Dinosaurs, 413–454. Indiana University Press, Bloomington.
  • McDonald, A.T., Barrett, P.M., and Chapman, S.D. 2010. A new basal iguano dont (Dinosauria: Ornithischia) from the Wealden (Lower Cretaceous) of England. Zootaxa 2569: 1–43.
  • Norman, D.B. 1980. On the ornithischian dinosaur Iguanodon bernissatensis from the Lower Cretaceous of Bernissart (Belgium). Mémoires de l’Institut Royal des Sciences Naturelles de Belgique 178: 1–103.
  • Norman, D.B. 1986. On the anatomy of Iguanodon atherfieldensis (Ornithischia: Ornithopoda). Bulletin de l’Institut Royal des Sciences Naturelle de Belgique: Sciences de la Terre 56: 281–372.
  • Norman, D.B., Witmer. L.M., and Weishampel, D.B. 2004a. Basal Ornithischia. In: D.B. Weishampel, P. Dodson, and H. Osmólska (eds.), The Dinosauria (second edition), 325–334. University of California Press, Berkeley.
  • Norman, D.B., Witmer, L.M., and Weishampel, D.B. 2004b. Basal Thyreophora. In: D.B. Weishampel, P. Dodson, and H. Osmólska (eds.), The Dinosauria (second edition), 335–342. University of California Press, Berkeley.
  • Paul, G.S. 1997. Dinosaur models: the good, the bad and using them to estimate the mass of dinosaurs. In: D.L. Wolberg, E. Stump, and G.D. Rosenberg (eds.), DinoFest International Proceedings, 129–154. The Academy of Natural Sciences, Philadelphia.
  • Prieto-Marquez, A. 2010. Global phylogeny of hadrosauidae (Dinosauria: Ornithopoda) using parsimony and Bayesian methods. Zoological Journal of the Linnean Society 159: 435–503.
  • Romer, A.S. 1923. Crocodilian pelvic muscles and their avian and reptilian homologues. Bulletin of the American Museum of Natural History 48: 533–552.
  • Romer, A.S. 1927. The pelvic musculature of ornithischian dinosaurs. Acta Zoologica 8: 225–275.
  • Russell, D.A. 1970. A skeletal reconstruction of Leptoceratops gracilis from the upper Edmonton Formation (Cretaceous) of Alberta. Canadian Journal of Earth Sciences 7: 181–184.
  • Sampson, S.D., Loewen, M.A., Farke, A.A., Roberts, E.M., Forster, C.A., Smith, J.A., and Titus, A.L. 2010. New horned dinosaurs from Utah provide evidence for intracontinental dinosaur endemism. PLoS One 5 (9): 1–12.
  • Sellers, W.I., Hepworth-Bell, J., Falkingham, P.L., Bates, K.T., Brassey, C.A., Egerton, V.M., and Manning, P.L. 2012. Minimum convex hull mass estimations of complete mounted skeletons. Biology Letters 8: 842–854.
  • Senter, P. 2007. Analysis of forelimb function in basal ceratopsians. Journal of Zoology 273: 305–314.
  • Sereno, P.C. 1990. New data on parrot-beaked dinosaurs (Psittacosaurus). In: K. Carpenter and P.J. Currie (eds.), Dinosaur Systematics: Approaches and Perspectives, 203–210. Cambridge University Press, Cambridge.
  • Sereno, P.C. 1991. Lesothosaurus, “fabrosaurids”, and the early evolution of Ornithischia. Journal of Vertebrate Paleontology 11: 168–197.
  • Sereno, P.C. 1999. The evolution of the dinosaurs. Science 284: 2137–2147.
  • Sereno, P.C. 2010. Taxonomy, cranial morphology and relationships of parrot-beaked dinosaurs (Ceratopsia: Psittacosaurus). In: M.J. Ryan, B.A. Chinnery-Allgeier, and D.A. Eberth (eds.), New Perspectives on Horned Dinosaurs: The Royal Tyrrell Museum Ceratopsian Symposium, 21–58. Indiana University Press, Bloomington.
  • Sternberg, C.M. 1951. Complete skeleton of Leptoceratops gracilis Brown from the Upper Edmonton Member of the Red Deer River, Alberta. National Museum of Canada Bulletin 123: 225–255.
  • Tereshchenko, V.S. 1996. A reconstruction of the locomotion of Protoceratops. Paleontological Journal 30: 232–245.
  • Thompson, R.S., Parish, J.C., Maidment, S.C.R., and Barrett, P.M. 2012. Phylogeny of the ankylosaurian dinosaurs (Ornithischia: Thyreophora). Journal of Systematic Palaeontology 10: 301–312.
  • Thulborn, R.A. 1971. Origins and evolution of ornithischian dinosaurs. Nature 234: 75–78.
  • Vickaryous, M.K., Maryańska, T., and Weishampel, D.B. 2004. Ankylosauria. In: D.B. Weishampel, P. Dodson, and H. Osmólska (eds.), The Dinosauria (second edition), 363–392. University of California Press, Berkeley.
  • Weishampel, D.B., Jianu, C.-M., Csiki, Z., and Norman, D.B. 2003. Osteology and phylogeny of Zalmoxes (N. G.), an unusual euornithopod dinosaur from the latest Cretaceous of Romania. Journal of Systematic Palaeontology 1: 65–123.
  • Wilson, J.A. and Carrano, M.T. 1999. Titanosaurs and the origin of “widegauge” trackways: a biomechanical and systematic perspective on sauropod locomotion. Paleobiology 25: 252–267.
  • Xu, X., Forster, C.A., Clark, J.M., and Mo, J.-Y . 2006. A basal ceratopsian with transitional features from the Late Jurassic of northwestern China. Proceedings of the Royal Society of London B: Biological Sciences 273: 2135–2140.
  • Xu, X., Wang, K.-B., Zhou, X.-J., Sullivan, C., and Chen, S.-Q. 2010. A new leptoceratopsid (Ornithischia: Ceratopsia) from the Upper Cretaceous of Shandong, China and its implications for neoceratopsian evolution. PLoS One 5 (11): 1–14.
  • Yates, A.M. and Kitching, J.W. 2003. The earliest known sauropod dinosaur and the first steps towards sauropod locomotion. Proceedings of the Royal Society of London B: Biological Sciences 270: 1753–1758.
  • Yates, A.M., Bonnan, M.F., Neveling, J., Chinsamy, A., and Blackbeard, M.G. 2010. A new transitional sauropodomorph dinosaur from the Early Jurassic of South Africa and the evolution of sauropod feeding and quadrupedalism. Proceedings of the Royal Society of London B: Biological Sciences 277: 787–794.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.