PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 58 | 1 |
Tytuł artykułu

Macroevolutionary and morphofunctional patterns in theropod skulls: A morphometric approach

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Theropod dinosaurs are one of the most remarkable lineages of terrestrial vertebrates in the Mesozoic, showing high taxo− nomic and ecological diversity. We investigate the cranial diversity of non−avian theropods and some basal birds, using geometric morphometrics to obtain insights into the evolutionary modifications of the skull. Theropod skulls mostly vary in the shape of the snout and length of the postorbital region (principal component [PC] 1), with further variation in orbit shape, depth of the postorbital region, and position of the jaw joint (PC 2 and PC 3). These results indicate that the cranial shape of theropods is closely correlated with phylogeny and dietary preference. Skull shapes of non−carnivorous taxa dif− fer significantly from carnivorous taxa, suggesting that dietary preference affects skull shape. Furthermore, we found a significant correlation between the first three PC axes and functional proxies (average maximum stress and an indicator of skull strength). Interestingly, basal birds occupy a large area within the morphospace, indicating a high cranial, and thus also ecological, diversity. However, we could include only a small number of basal avialan species, because their skulls are fragile and there are few good skull reconstructions. Taking the known diversity of basal birds from the Jehol biota into account, the present result might even underestimate the morphological diversity of basal avialans.
Wydawca
-
Rocznik
Tom
58
Numer
1
Opis fizyczny
p.1-16,fig.,ref.
Twórcy
autor
  • Bavarian State Collection for Palaeontogy and Geology, Department of Earth and Environmental Sciences, Ludwig-Maximilians-University, Richard-Wagner Str.10, D-80333 Munich, Germany
  • Bavarian State Collection for Palaeontogy and Geology, Department of Earth and Environmental Sciences, Ludwig-Maximilians-University, Richard-Wagner Str.10, D-80333 Munich, Germany
Bibliografia
  • Abzhanov, A., Protas, M., Grant, B.R., Grant, P.R., and Tabin, C.J. 2004. Bmp4 and morphological variation of beaks in Darwin’s finches. Science 305: 1462–1465.
  • Abzhanov, A., Kuo, W.P., Hartmann, C., Grant, B.R., Grant, P.R., and Tabin, C.J. 2006. The calmodulin pathway and evolution of elongated beak morphology in Darwin’s finches. Nature 442: 563–567.
  • Adams, D.C., Rohlf, F.J., and Sclice, D.E. 2004. Geometric morphometrics: ten years of progress following the “revolution”. Italian Journal of Zoology 71: 5–16.
  • Anderson, M.J. 2001.Anew method for non−parametric multivariate analysis of variance. Austral Ecology 26: 32–46.
  • Barrett, P.M. 2005. The diet of ostrich dinosaurs (Theropoda: Ornithomimosauria). Palaeontology 48: 347–358.
  • Barrett, P.M. and Rayfield, E.J. 2006. Ecological and evolutionary implications of dinosaur feeding behaviour. Trends in Ecology and Evolution 21: 217–224.
  • Barrett, P.M., Butler, R.J., and Nesbitt, S.J. 2011. The roles of herbivory and omnivory in early dinosaur evolution. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 101: 383–396.
  • Benson, R.B.J., Carrano, M.T., and Brusatte, S.L. 2010. A new clade of archaic large−bodied predatory dinosaurs (Theropoda: Allosauroidea) that survived to the latest Mesozoic. Naturwissenschaften 97: 71–78.
  • Benson, R.B.J., Butler, R.J., Carrano, M.T., and O’Connor, P.M. 2012. Air−filled postcranial bones in theropod dinosaurs: physiological implications and the “reptile”—bird transition. BiologicalReviews 87: 168–193.
  • Bookstein, F.L. 1991. Morphometric Tools for Landmark Data. 456 pp. Cambridge University Press, Cambridge.
  • Brusatte, S.L., Norell, M.A., Carr, T.D., Erickson, G.M., Hutchinson, J.R., Balanoff, A.M., Bever, G.S., Choiniere, J.N., Makovicky, P.J., and Xu, X. 2010. Tyrannosaur paleobiology: New research on ancient exemplar organisms. Science 329: 1481–1485.
  • Brusatte, S.L., Sakamoto, M., Montanari, S., and Harcourt Smith, W.E.H. 2012. The evolution of cranial form and function in theropod dinosaurs: insights from geometric morphometrics. Journal of Evolutionary Biology 25: 365–377.
  • Butler, R.J. and Goswami, A. 2008. Body size evolution in Mesozoic birds: little evidence for Cope’s rule. Journal of Evolutionary Biology 21: 1673–1682.
  • Butler, R.J., Benson, R.B.J., Carrano, M.T., Mannion, P.D., and Upchurch, P. 2011. Sea−level, dinosaur diversity, and sampling biases: investigating the “common cause” hypothesis in the terrestrial realm. Proceedings of the Royal Society of London B 278: 1165–1170. Campàs, O., Mallarino, R., Herrel, A., Abzhanov, A., and Brenner, M.P. 2010. Scaling and shear transformations capture beak shape variation in Darwin’s finches. Proceedings of the National Academy of Sciences, U.S.A. 107: 3356–3360.
  • Chapman, R.E. 1990. Shape analysis in the study of dinosaur morphology. In: K. Carpenter and P.J. Currie (eds.), Dinosaur Systematics: Approaches and Perspectives, 21–42. Cambridge University Press, Cambridge.
  • Chapman, R.E. and Brett−Surman, M.K. 1990. Morphometric observations on hadrosaurid ornithopods. In: K. Carpenter and P.J. Currie (eds.), Dinosaur Systematics: Approaches and Perspectives, 163–177. Cambridge University Press, Cambridge.
  • Chapman, R.E., Galton, P.M., Sepkoski, J.J., Jr., and Wall, W.P. 1981. A morphometric study of the cranium of the pachycephalosaurid dinosaur Stegoceras. Journal of Paleontology 55: 608–618.
  • Chiappe, L.M., Norell, M.A., and Clark, J.M. 2002. The Cretaceous, short−armed Alvarezsauridae: Mononykus and its kin. In: L.M. Chiappe and L.M. Witmer (eds.), Mesozoic Birds: Above the Heads of Dinosaurs, 87–120. University of California Press, Berkeley.
  • Choiniere, J.N., Xu, X., Clark, J.M., Forster, C.A., Guo, Y., and Han, F. 2010. A basal alvarezsauroid theropod from the Early Jurassic of Xinjiang, China. Science 327: 571–574.
  • Christiansen, P. and Fariña, R.A. 2004. Mass prediction in theropod dinosaurs. Historical Biology 16: 85–92.
  • Clark, J.M., Norell, M.A., and Makovicky, P.J. 2002a. Cladistic approaches to the relationships of birds to other theropod dinosaurs. In: L.M.
  • Chiappe and L.M. Witmer (eds.), Mesozoic Birds: Above the Heads of Dinosaurs, 31–61. University of California Press, Berkeley.
  • Clark, J.M., Norell, M.A., and Rowe, T. 2002b. Cranial anatomy of Citipati osmolskae (Theropoda, Oviraptorosauria), and a reinterpretation of the holotype of Oviraptor philoceratops. American Museum Novitates 3364: 1–24.
  • Csiki, Z., Vremir, M., Brusatte, S.L., and Norell, M.A. 2010. An aberrant island−dwelling theropod dinosaur from the Late Cretaceous of Romania. Proceedings of the National Academy of Sciences, U.S.A. 107: 15357–15361.
  • D‘Amore, D.C. 2009. A functional explanation for denticulation in theropod dinosaur teeth. The Anatomical Record 292: 1297–1314.
  • Dececchi, T.A. and Larsson, H.C.E. 2011. Assessing arboreal adaptations of bird antecedents: testing the ecological setting of the origin of the avian flight stroke. PLoS ONE 6: e22292.
  • Dingus, L. and Rowe, T. 1997. The Mistaken Extinction: Dinosaur Evolution and the Origin of Birds. 332 pp. Freeman, New York.
  • Dodson, P. 1993. Comparative craniology of the Ceratopsia. American Journal of Science 293: 200–234.
  • Elewa, A.M.T. 2004. Morphometrics: Applications in Biology and Paleontology. 280 pp. Springer Verlag, Berlin.
  • Erickson, G.M., Rogers, K.C., and Yerby, S.A. 2001. Dinosaur growth patterns and rapid avian growth rates. Nature 412: 429–432.
  • Erickson, G.M., Rauhut, O.W.M., Zhou, Z., Turner, A.H., Inouye, B.D., Hu, D., and Norell, M.A. 2009. Was dinosaurian physiology inherited by birds? Reconciling slow growth in Archaeopteryx. PLoS ONE 4: e7390.
  • Felsenstein, J. 1985. Phylogenies and the comparative method. The American Naturalist 125: 1–15.
  • Freckleton, R.P., Harvey, P.H., and Pagel, M. 2002. Phylogenetic analysis and comparative data: a test and review of the evidence. The American Naturalist 160: 712–726.
  • Garland, T., Harvey, P.H., and Ives, A.R. 1992. Procedures for the analysis of comparative data using phylogenetically independent contrasts. Systematic Biology 41: 18–32.
  • Gatesy, S.M. 1990. Caudofemoral musculature and the evolution of theropod locomotion. Paleobiology 16: 170–186.
  • Gauthier, J.A. 1986. Saurischian monophyly and the origin of birds. Memoirs of the California Academy of Science 8: 1–55.
  • Goodwin, M.B. 1990. Morphometric landmarks of pachycephalosaurid cranial material from the Judith River Formation of northcentral Montana. In: K. Carpenter and P.J. Currie (eds.), Dinosaur Systematics: Approaches and Perspectives, 189–201. Cambridge University Press, Cambridge.
  • Hammer, O. 2009. PAST: Paleontological Statistics. Reference Manual. 191 pp. http://folk.uio.no/ohammer/past/
  • Hammer, O. and Harper, D. 2006. Paleontological Data Analysis. 351 pp. Blackwell Publishing, Malden.
  • Hammer, O., Harper, D.A.T., and Ryan, P.D. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 1–9.
  • Henderson, D.M. 2002. The eyes have it: The sizes, shapes, and orientations of theropod orbits as indicators of skull strength and bite force. Journal of Vertebrate Paleontology 22: 766–778.
  • Hu, D., Hou, L., Zhang, L., and Xu, X. 2009. A pre−Archaeopteryx troodontid theropod from China with long feathers on the metatarsus. Nature 461: 640–643.
  • Hunt, G. and Carrano, M.T. 2010. Models and methods for analyzing phenotypic evolution in lineages and clades. The Paleontological Society Papers 16: 245–269.
  • Hutchinson, J.R. 2001a. The evolution of femoral osteology and soft tissues on the line to extant birds (Neornithes). Zoological Journal of the Linnean Society 131: 169–197.
  • Hutchinson, J.R. 2001b. The evolution of pelvic osteology and soft tissues on the line to extant birds (Neornithes). Zoological Journal of the Linnean Society 131: 123–168.
  • Johnson, D.R. and O'Higgins, P. 1996. Is there a link between changes in the vertebral “hox code” and the shape of vertebrae?Aquantitative study of shape change in the cervical vertebral column of mice. Journal of Theoretical Biology 183: 89–93.
  • Jones, K.E. and Goswami, A. 2010. Quantitative analysis of the influence of phylogeny and ecology on phocid abd otariid pinniped (Mammalia; Carnivora) cranial morphology. Journal of Zoology 280: 297–308.
  • Klingenberg, C.P. 2009. Morphometric integration and modularity in configurations of landmarks: tools for evaluating a priori hypotheses. Evolution & Development 11: 405–421.
  • Klingenberg, C.P. 2010. Evolution and development of shape: integrating quantitative approaches. Nature Reviews Genetics 11: 623–635.
  • Klingenberg, C.P. 2011. MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources 11: 353–357.
  • Klingenberg, C.P. and Gidaszewski, N.A. 2010. Testing and quantifying phylogenetic signals and homoplasy in morphometric data. Systematic Biology 59: 245–261.
  • Laurin, M. 2004. The evolution of body size, Cope’s rule and the origin of amniotes. Systematic Biology 53: 594–622.
  • Li, D., Sullivan, C., Zhou, Z., and Zhang, F. 2010. Basal birds from China: a brief review. Chinese Birds 1 (2): 83–96.
  • Maddison, W.P. 1991. Squared−change parsimony reconstructions of ancestral states for continuous−valued characters on a phylogenetic tree. Systematic Zoology 40: 304–314.
  • Maddison, W.P. and Maddison, D.R. 2009. Mesquite: A Modular System of Evolutionary Analysis. Version 2.72. http://mesquiteproject.org/
  • Mallarino, R., Grant, P.R., Grant, B.R., Herrel, A., Kuo, W.P., and Abzhanov, A. 2011. Two developmental modules establish 3D beak−shape variation in Darwin’s finches. Proceedings of the National Academy of Sciences, U.S.A. 108: 4057–4062.
  • Marugán−Lobón, J. and Buscalioni, A.D. 2003. Disparity and geometry of the skull in Archosauria. Biological Journal of Linnean Society 80: 67–88.
  • Marugán−Lobón, J. and Buscalioni, A.D. 2004. Geometric morphometrics in macroevolution: morphological diversity of skull in modern avian forms in contrast to some theropod dinosaurs. In: A.M.T. Elewa (ed.), Morphometrics: Applications in Biology and Paleontology, 157–173. Springer−Verlag, Berlin.
  • Marugán−Lobón, J. and Buscalioni, A.D. 2006. Avian skull morphological evolution: exploring exo− and endocranial covariation with two−block partial least squares. Zoology 109: 217–230.
  • Mazzetta, G.V., Fariña, R.A., and Vizcaíno, S.F. 2000. On the palaeobiology of the South American horned theropod Carnotaurus sastrei Bonaparte. Gaia 15: 185–192.
  • Middleton, K.M. and Gatesy, S.M. 2000. Theropod forelimb design and evolution. Zoological Journal of the Linnean Society 128: 149–187.
  • Midford, P.E., Garland Jr., T., and Maddison, W.P. 2005. PDAP Package of Mesquite. Version 1.07. http://mesquiteproject.org/pdap_mesquite/
  • Novas, F.E. and Pol, D. 2002. Alvarezsaurid relationships reconsidered. In: L.M. Chiappe and L.M.Witmer (eds.), Mesozoic Birds: Above the Heads of Dinosaurs, 121–125. University of California Press, Berkeley.
  • O‘Connor, J.K. and Chiappe, L.M. 2011. A revision of enantiornithine (Aves: Ornithothoraces) skullmorphology. Journal of Systematic Palaeontology 9: 135–157.
  • Osmólska, H., Currie, P.J., and Barsbold, R. 2004. Oviraptorosauria. In: D.B. Weishampel, P. Dodson, and H. Osmólska (eds.), The Dinosauria, 165–183. University of California Press, Berkeley.
  • Padian, K., Ricqlès, A.D., and Horner, J.R. 2001. Dinosaurian growth rates and bird origins. Nature 412: 405–408.
  • Piras, P., Salvi, D., Ferrara, G., Maiorino, L., Delfino, M., Pedde, L., and Kotsakis, T. 2011. The role of post−natal ontogeny in the evolution of phenotypic diversity in Podarcis lizards. Journal of Evolutionary Biology 24: 2705–2720.
  • Purvis, A. and Rambaut, A. 1995. Comparative analysis by independent contrasts (CAIC)—an Apple Macintosh application for analysing comparative data. Computer Applications in the Biosciences 11: 247–251.
  • Rauhut, O.W.M. 2003. The interrelationships and evolution of basal theropod dinosaurs. Special Papers in Palaeontology 69: 1–213.
  • Rauhut, O.W.M. 2007. The myth of the conservative character: braincase characters in theropod phylogenies. Hallesches Jahrbuch für Geowissenschaften, Beiheft 23: 51–54.
  • Rayfield, E.J. 2005. Aspects of comparative cranial mechanics in the theropod dinosaurs Coelophysis, Allosaurus and Tyrannosaurus. Zoological Journal of the Linnean Society 144: 309–316.
  • Rayfield, E.J. 2011. Structural performance of tetanuran theropod skulls, with emphasis on the Megalosauridae, Spinosauridae and Charcharodontosauridae. Special Papers in Palaeontology 86: 241–253.
  • Rohlf, F.J. 2003. TpsRelw, Relative Warps Analysis, Version 1.36. Department of Ecology and Evolution, State University of New York, Stony Brook.
  • Rohlf, F.J. 2005. TpsDig, Digitize Landmarks and Outlines, Version 2.05. Department of Ecology and Evolution, State University of New York, Stony Brook.
  • Rohlf ,F.J. and Corti, M. 2000. Use of two−block partial least−squares to study covariation in shape. Systematic Biology 49: 740–753.
  • Sakamoto, M. 2010. Jaw biomechanics and the evolution of biting performance in theropod dinosaurs. Proceedings of the Royal Society B 277: 3327–3333.
  • Schweitzer, M.H. and Marshall, C.L. 2001. A molecular model for the evolution of endothermy in the theropod−bird lineage. Journal of Experimental Zoology (MOL DEV EVOL) 291: 317–338.
  • Sereno, P.C. 1999. The evolution of dinosaurs. Science 284: 2137–2147.
  • Smith, K.K. 1993. The form of the feeding apparatus in terrestrial vertebrates: Studies of adaptation and constraint. In: J. Hanken and B.K. Hall (eds.), The Skull, Vol. 3, 150–196. The University of Chicago Press, Chicago.
  • Smith, N.D., Makovicky, P.J., Hammer, W.R., and Currie, P.J. 2007. Osteology of Crylophosaurus ellioti (Dinosauria: Theropoda) from the Early Jurassic of Antarctica and implications for early theropod evolution. Zoological Journal of the Linnean Society 151: 377–421.
  • Sues, H.−D., Nesbitt, S.J., Berman, D., and Henrici, A.C. 2011. A late−surviving basal theropod dinosaur from the latest Triassic of North America. Proceedings of the Royal Society B 278: 3459–3464.
  • Turner, A.H., Pol, D., Clarke, J.A., Erickson, G.M., and Norell, M.A. 2007. A basal dromaeosaurid and size evolution preceding avian flight. Science 317: 1378–1381.
  • Wagner, G.P. and Gauthier, J.A. 1999. 1,2,3 = 2,3,4: A solution to the problem of the homology of the digits in the avian hand. Proceedings of the National Academy of Sciences, U.S.A. 96: 5111–5116.
  • Weishampel, D.B., Dodson, P., and Osmólska, H. 2004. The Dinosauria. 880 pp. University of California Press, Berkeley.
  • Witmer, L.M. 1995. The Extant Phylogenetic Bracket and the importance of reconstructing soft tissues in fossils. In: J.J. Thomason (ed.), Functional Morphology in Vertebrate Paleontology, 19–33. Cambridge University Press, Cambridge.
  • Witmer, L.M. 1997. The evolution of the antorbital cavity of archosaurs: a study in soft−tissue reconstruction in the fossil record with an analysis of the function of pneumaticity. Journal of Vertebrate Paleontology 17: 1–73.
  • Witzel, U. and Preuschoft, H. 2005. Finite−element model construction for the virtual synthesis of the skulls in vertebrates: case study of Diplodocus. The Anatomical Record 283A: 391–401.
  • Witzel, U., Mannhardt, J., Goessling, R., Micheeli, P., and Preuschoft, H. 2011. Finite element analyses and virtual syntheses of biological structures and their application to sauropod skulls. In: N. Klein, K. Remes, G.T. Gee, and P.M. Sander (eds.), Biology of the Sauropod Dinosaurs: Understanding the Life of Giants, 171–181. Indiana University Press, Bloomington.
  • Wu, P., Jiang, T., Suksaweang, S., Widelitz, R.B., and Chuong, C. 2004. Molecular shaping of the beak. Science 305: 1465–1466.
  • Wu, P., Jiang, T., Shen, J., Widelitz, R.B., and Chuong, C. 2006. Morphoregulation of avian beaks: Comparativemapping of growth zone activities andmorphological evolution. DevelopmentalDynamics 235: 1400–1412.
  • Xu, X. and Guo, Y. 2009. The origin and early evolution of feathers: insights from recent paleontological and neontological data. Vertebrata PalAsiatica 47: 311–329.
  • Xu,X., Clark, J.M.,Mo, J.,Choiniere, J., Forster,C.A., Erickson, G.M.,Hone, D.W.E., Sullivan, C., Eberth, D.A., Nesbitt, S., Zhao, Q., Hernandez, R., Jia, C., Han, F., and Guo, Y. 2009a. A Jurassic ceratosaur from China helps clarify avian digital homologies. Nature 459: 940–944.
  • Xu, X., Zhao, Q., Norell, M.A., Sullivan, C., Hone, D., Erickson, G.M., Wang, X., Han, F., and Guo, Y. 2009b. A new feathered maniraptoran dinosaur fossil that fills a morphological gap in avian origin. Chinese Science Bulletin 54: 430–435.
  • Xu, X., You, H., Du, K., and Han, F. 2011. An Archaeopteryx−like theropod from China and the origin of Avialae. Nature 475: 465–470.
  • You, H., Lamanna, M.C., Harris, J.D., Chiappe, L.M., O’Connor, J.K., Ji, S., Lü, J., Yuan, C., Li, D., Zhang, X., Lacovara, K.J., Dodson, P., and Ji, Q. 2006. A nearly modern amphibious bird from the Early Cretaceous of northwestern China. Science 312: 1640–1643.
  • Young, M.T. and Larvan, M.D. 2010. Macroevolutionary trends in the skull of sauropodomorph dinosaurs—the largest terrestrial animals to have ever lived. In: A.M.T. Elewa (ed.), Morphometrics for Non−Morphometricans, 259–269. Springer−Verlag, Berlin.
  • Zanno, L.E. 2010. A taxonomic and phylogenetic re−evaluation of Therizinosauria (Dinosauria: Maniraptora). Journal of Systematic Palaeontology 8: 503–543.
  • Zanno, L.E. and Makovicky, P.J. 2011. Herbivorous ecomorphology and specialization patterns in theropod dinosaur evolution. Proceedings of the National Academy of Sciences, U.S.A. 108: 232–237.
  • Zelditch, M.L., Swiderski, D.L., Sheets, H.D., and Fink, W.L. 2004. Geometric Morphometrics for Biologist: A Primer. 443 pp. Elsevier Academic Press, Amsterdam.
  • Zhou, Z. and Zhang, F. 2003. Anatomy of the primitive bird Sapeornis chaoyangensis from the Early Cretaceous of Liaoning, China. Canadian Journal of Earth Sciences 40: 731–747.
  • Zhou, Z., Clarke. J., Zhang. Z., and Wings, O. 2004. Gastroliths in Yanornis: an indication of the earliest radical diet−switching and gizzard plasticity in the lineage leading to living birds? Naturwissenschaften 91: 571–574.
  • Zusi, R.L. 1993. Patterns of diversity in the avian skull. In: J. Hanken and B.K. Hall (eds.), The Skull. Vol. 2. Patterns of Structural and Systematic Diversity, 391–437. University of Chicago Press, Chicago.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-12160ba9-543f-4548-acc7-fbe1e5bbb5b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.