PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2016 | 62 | 4 |
Tytuł artykułu

Fumigant toxicities of essential oils and two monoterpenes against potato tuber moth (Phthorimaea operculella Zeller)

Treść / Zawartość
Warianty tytułu
PL
Zastosowanie fumigacji za pomocą olejków eterycznych i dwóch monoterpenów do zwalczania skośnika ziemniaczaka (Phthorimaea operculella Zeller)
Języki publikacji
EN
Abstrakty
EN
Introduction: The potato tuber moth (PTM) is the major economic pest of potato. Different approaches were tried to prevent and control this pest including natural pesticides and synthetic fumigants. Objectives: This study was conducted to evaluate the insecticidal activity of the essential oils of thyme and myrtle. In addition to evaluating the insecticidal activity of carvacrol and eucalyptol against the different life stages of potato tuber moth using a fumigation bioassays. Methods: Thyme and myrtle oils were extracted from wild Thymus syriacus Boiss. and wild Myrtus communis L. by hydrodistillation. Fumigation experiments were conducted on potato tuber moth of different stages of development (eggs, larvae, pupae, and adults), using standard methods. The potato tuber moth was treated for different periods using different concentrations of the essential oils. One-way analysis of variance (ANOVA) was applied on the mortality percentages data to estimate the significance of differences between treatments at p<0.05. Probit analysis was used to estimate the LC50, LC90 and LT50. Results: Adult stage was the most sensitive to essential oils vapours with LC50 value of 0.5 μl/l air. Whereas, pupal stages were the most tolerant. The essential oil of thyme possessed the strongest fumigant toxicity against eggs with a LC50 value of 6.1 μl/l air. The two monoterpens showed varied fumigant toxicity against adult stage. Carvacrol achieved 100% mortality at 0.125 μl/l air after 6 h, and 0.025 μl/l air after 48h exposure with LT50 period of 0.5 h. Conclusion: The present work demonstrated that T. syriacus essential oil is a promising natural fumigant against the different developmental stages of PTM.
PL
Wstęp: Skośnik ziemniaczak (PTM) jest szkodnikiem powodującym największe szkody w zbiorach ziemniaka. Podejmowano różne próby zapobieżenia i kontrolowania tego szkodnika za pomocą naturalnych pestycydów i syntetycznych fumigantów. Cele: Przedstawione badania miały na celu określenie aktywności owadobójczej olejków eterycznych z tymianku i mirtu. Dodatkowo stosując fumigację zbadano aktywność owadobójczą karwakrolu i eukaliptolu przeciwko skośnikowi ziemniaczakowi w różnych stadiach jego rozwoju. Metody: Olejki z tymianku i mirtu wyekstrahowano z dzikorosnących osobników Thymus syriacus Boiss. i Myrtus communis L. metodą hydrodestylacji. Doświadczenia z fumigacją prowadzono na różnych stadiach rozwojowych skośnika (jaja, larwy, poczwarki i okazy dorosłe) przy użyciu standardowych metod. Stosowano różne stężenia oraz czasy działania olejków eterycznych. Do określenia istotności statystycznej różnic w śmiertelności owadów (przy p<0.05) użyto jednoczynnikowej analizy wariancji (ANOVA). Do oznaczenia LC50, LC90 and LT50 wykorzystano analizę probitową. Wyniki: Osobniki dorosłe były najbardziej wrażliwe na opary olejków eterycznych – LC50 przy stężeniu 0,5 μl/l powietrza. Z kolei poczwarki tolerowały go najlepiej. Opary olejku eterycznego z tymianku najsilniej toksycznie działały na jaja – LC50 przy stężeniu 6,1 μl/l powietrza. Dwa monoterpeny wykazały różnorakie działanie toksyczne na osobniki dorosłe. Karwakrol powodował 100% śmiertelność przy stężeniu 0,125 μl/l powietrza po 6 h i dla stężenia 0,025 μl/l powietrza po 48 h ekspozycji, przy okresie LT50 wynoszącym 0,5 h. Wniosek: W pracy wykazano, że olejek eteryczny z T. syriacus jest obiecującym naturalnym fumigantem działającym przeciwko PTM w różnych stadiach rozwojowych.
Słowa kluczowe
EN
Wydawca
-
Czasopismo
Rocznik
Tom
62
Numer
4
Opis fizyczny
p.82-96,fig.,ref.
Twórcy
autor
  • Department of Molecular Biology and Biotechnology, PO Box 6091, AECS, Damascus, Syria
autor
  • Department of Molecular Biology and Biotechnology, PO Box 6091, AECS, Damascus, Syria
autor
  • Department of Molecular Biology and Biotechnology, PO Box 6091, AECS, Damascus, Syria
Bibliografia
  • 1. Bennett A, Bennett AL, Toit C. Chemical control of potato tuber moth, Phthorimaea operculella (Zeller), in tobacco seedlings. Afr Plant Prot 1999; 5(2):83-88.
  • 2. Moawad SS, Ebadah IMA. Impact of some natural plant oils on some biological aspects of the potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera; Gelechiidae). Res J Agr Biol Sci 2007; 3(2):119-123.
  • 3. Clough GH, Rondon Si, DeBano SJ, David N, Hamm PB. Reducing tuber damage by potato tuber worm (Lepidoptera: Gelechiidae) with cultural practices and insecticides. J Econ Entomol 2010; 103(4):1306-1311.
  • 4. Hafez El-kady. Insecticide resistance in potato tuber moth Phthorimaea operculella Zeller in Egypt. J Am Sci 2011; 7(10):263-266.
  • 5. Dogramaci M, Tingey M. Comparison of insecticide resistance in a North American field population and laboratory colony of potato tuber worm (Lepidoptera: Gelechiidae). J Pest Sci 2008; 81:17-22. doi: http://dx.doi.org//10.1007/s10340-007-0178-5
  • 6. Llanderal-Cazares C, Lagunes-Tejada A, Carrillo-Sa´nchez JL, Sosa-Moss C, Vera-Graziano J, Bravo-Mojica H. Susceptibility of Phthorimaea operculella (Zeller) to insecticides. J Entomol Sci 1996; 31:420-426.
  • 7. Kroschel J, Management of the potato tuber 6th World Potato Congress, August 20 – 26, Boise, Idaho, USA 2006. www.potatocongress.org//Dr_Jurgen_Krosc.
  • 8. Kroschel J, Koch W. Studies on the use of chemicals, botanicals and Bacillus thuringiensis in the management of the potato tuber moth in potato stores. Crop Prot 1996; 15(2):197-203. doi: http://dx.doi.org//10.1016/0261-2194(95)00126-3
  • 9. Kay IR. Testing insecticides against Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae) using a tomato plant bioassay. Plant Prot Q 2006; 21(1):20-24.
  • 10. Vaneva-Gancheva T, Dimitrov Y. Chemical control of the potato tuber moth Phthorimaea operculella (Zeller) on tobacco. Bulg J Agric Sci 2013; 19(5):1003-1008.
  • 11. Haines CP. The potato tuber moth, Phthorimaea operculella Zeller a bibliography of recent literature and a review of its biology and control on potatoes in the field and in store. Tropical Products Institute, London1977.
  • 12. WMO. Scientific assessment of ozone depletion: World Metrological Organization global ozone research and monitoring project. Report No. 37, WMO, Geneva, Switzerland 1995.
  • 13. Bell CH, Wilson SM. Phosphine tolerance and resistance in Trogoderma granarium Everts (Coleoptera: Dermestidae). J Stored Prod. Res 1995; 31:199-205. doi: http://dx.doi.org/10.1016/0022-474x(95)00012-v
  • 14. Nakakita H, Winks RG. Phosphine resistance in immature stages of a laboratory selected strain of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Stored Prod Res 1981; 17(2):43-52. doi: http://dx.doi.org/10.1016/0022-474x(81)90016-3
  • 15. Prakash A, Rao J. Botanical Pesticides in Agriculture. CRC Press, Inc., 2000 Corporate Bld., N.W., Boca Raton, FL, USA 1997; pp. 480.
  • 16. Papachristos DP, Karamanoli KI, Stamopoulos DC, Menkissoglu-Spiroudi U. The relationship between the chemical composition of three essential oils and their insecticidal activity against Acanthoscelides obtectus (Say). Pest Manag Sci 2004; 60(5):514-520. doi: http://dx.doi.org/10.1002/ps.798
  • 17. Tayoub G, Abu Alnaser A, Ghanem I. Fumigant activity of leaf essential oil from Myrtus communis L. against the Khapra Beetle. Int J Med Arom Plants 2012; 2(1):207-213.
  • 18. Regnault-Roger C, Hamraoui A. Fumigant toxic activity and reproductive inhibition induced by monoterpenes on Acanthoscelides obtectus (Say) (Coleoptera), a bruchid of kidney bean (Phaseolus vulgaris L.). J Stored Prod Res 1995; 31(4):291-299. doi: http://dx.doi.org/10.1016/0022-474x(95)00025-3
  • 19. Conti B, Canale A, Cioni PL, Flamini G, Rifici A. Hyptis suaveolens and Hyptis spicigera (Lamiaceae) essential oils: qualitative analysis, contact toxicity and repellent activity against Sitophilus granarius (L.) (Coleoptera: Dryophthoridae). J Pest Sci 2011; 84(2):219-228. doi: http://dx.doi.org/10.1007/s10340-010-0343-0
  • 20. Ormachea A. Traditional use of muna (Minthostachys spp. Labiatae) in phytosanitary aspects of Cusco and Puno [Peru, plant protection]. Revista Peruana de Entomologia (Peru) 1979.
  • 21. Raman KA, Booth RH, Palacio M. Control of the PTM, Phthorimaea operculella (Zeller) in rustic potato stores. Trop ScL 1987; 2Z:175-194.
  • 22. Sharma RN, Joshi V, Zadu G, Bhosale AS, Gupto A, Patwardhan S et al. Oviposition deterrence activity in some Lamiaceae plants against some insect pests. Z. Naturforsch Sect BioscL 1981; 36(1-2):122-125.
  • 23. Khashyap NP, Bhagat RH, Sharma DC, Suri SM. Efficacy of some useful plant leaves for the control of the potato tuber motli, Phthorimaea operculella (Zell.) in stores. J Entomol Res 1992; 16(3):223-227.
  • 24. Sharaby A, Abdel-Rahman H, Abdel-Aziz SH, Moawad S. Susceptibility of different potato varieties to infestation by potato tuber moth and role of the plant powders on their protection. IOSR J Agric and Vetr 2014; 6(4):71-80.
  • 25. Ministry of Agriculture. Annual Agricultural Satirical Abstract, Syria. 2014.
  • 26. Saour G. Effect of thiacloprid against the potato tuber moth Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae). J Pest Sci 2008; 81(1):3-8. doi: http://dx.doi.org/10.1007/s10340-007-0188-3
  • 27. Ibrahim MY. Study of effect of temperatures on the natural death and the biotic potential of potato tuber moth, Phthorimaea operculella (Zeller), (Lepidoptera: Gelechiidae) and used of some plant extracts as insect repellents against potato tuber moth under lab. conditions. Agricultural Scientific Research (Syria). 2008. 35(1,2):1-10.
  • 28. Clevenger JF. Apparatus for the determination of volatile oil. J. Am Pharm Assoc 1928; 17:345-349. doi: http://dx.doi.org/10.1002/jps.3080170407
  • 29. Al-Mariri A, Swied G, Oda A, Al Hallab L. Antibacterial activity of Thymus syriacus Boiss essential oil and its components against some Syrian gram-negative bacteria isolates. Iran J Med Sci 2013; 38(2 Suppl):180-186.
  • 30. Al-Mariri A, Swied G, Oda A, Al- Hallab L. Variation in Myrtus communis L. Essential oil composition and its antibacterial activities components. Pak J Sci Ind Res Ser B: Biol Sci 2016; 59(1). In press.
  • 31. Bajpai VK, Al-Reza SM, Choi UK, Lee JH, Kang SC. Chemical composition, antibacterial and antioxidant activities of leaf essential oil and extracts of Metasequioa glyptostroboides Miki ex Hu. Food Chem Toxicol 2009; 47(8):1876-1883. doi: http://dx.doi.org/10.1016/j.fct.2009.04.043
  • 32. Tayoub G, Odeh A, Ghanem I. Chemical composition and efficacy of essential oil from Juniperus foetidissima Willd against the Khapra Beetle. Int J Med Arom Plants 2012; 2(3):501-508.
  • 33. Tayoub G, Odeh A, Ghanem I. Chemical composition and fumigation toxicity of Laurus nobilis L. and Salvia officinalis L. essential oils on larvae of khapra beetle (Trogoderma granarium Everts). Herba Pol 2012; 58(2): 26-37.
  • 34. Saour G, Makee H. Radiation induced sterility in male potato tuber moth Phthorimaea operculella Zeller (Lep. Gelechiidae). J Appl Entomol 1997; 121(1-5):411-415.
  • 35. Gamboa M, Notz A. Biology of Phthorimaea operculella in potato. Revista de la Facultad de Agronomia, Universidad Central de Venezuela 1990; 16(3-4):245-257.
  • 36. Finney DJ. Probit analysis, 3rd ed. Cambridge University, London, UK. 1971; 19-76.
  • 37. Obeng-Ofori D, Reichmuth CH. Bioactivity of eugenol, a major component of essential oil of Ocimum suave (Wild.) against four species of stored-product Coleoptera. International Pest Manag Sci 1997; 43(1):89-94. doi: http://dx.doi.org/10.1080/096708797229040
  • 38. Isman MB, Wan AJ, Passreiter CM. Insecticidal activity of essential oils to the tobacco cutworm, Spodoptera litura. Fitoterapia 2001; 72(1):65-68. doi: http://dx.doi.org/10.1016/s0367-326x(00)00253-7
  • 39. Rajendran S, Sriranjini V. Plant products as fumigants for stored-product insect control. J Stored Prod Res 2008; 44(2):126-135. doi: http://dx.doi.org/10.1016/j.jspr.2007.08.003
  • 40. Rafiee-Dastjerdi H, Khorrami F, Razmjou J, Esmaeilpour B, Golizadeh A, Hassanpour M. The efficacy of some medicinal plant extracts and essential oils against potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae). J Crop Prot 2013; 2(1):93-99.
  • 41. Saroukolai AT, Moharramipour S, Meshkatalsadat MH. Insecticidal properties of Thymus persicus essential oil against Tribolium castaneum and Sitophilus oryzae. J Pest Sci 2010; 83(1):3-8. doi: http://dx.doi.org/10.1007/s10340-009-0261-1
  • 42. Ayvaz A, Sagdic O, Karaborklu S, Ozturk I. Insecticidal activity of the essential oils from different plants against three stored-product insects. J Insect Sci 2010; 10(1):21. doi: http://dx.doi.org/10.1673/031.010.2101
  • 43. Clemente-Casares P, Pina S, Buti M, Jardi R, Martín M, Bofill-Mas S, et al. Hepatitis E virus epidemiology in industrialized countries. Emerg Infect Dis 2003; 9(4):449. doi: http://dx.doi.org/10.3201/eid0904.020351
  • 44. Jahanshir S. Fumigant toxicity of four plant essential oils against Tribolium castaneum (Herbst) and T. confusum (Du VaL.). Tech J Engin App Sci 2013; 3(22):3158-3162.
  • 45. Kostyukovsky M, Rafaeli A, Gileadi C, Demchenko N, Shaaya E. Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: possible mode of action against insect pests. Pest Manag Sci 2002; 58(11):1101-1106. doi: http://dx.doi.org/10.1002/ps.548
  • 46. Rozman V, Kalinovic I, Korunic Z. Toxicity of naturally occurring compounds of Lamiaceae and Lauraceae to three stored-product insects. J Stored Prod Res 2007; 43(4):349-355. doi: http://dx.doi.org/10.1016/j.jspr.2006.09.001
  • 47. Lee BH, Annis PC, Tumaalii F, Choi WS. Fumigant toxicity of essential oils from the Myrtaceae family and 1,8-cineole against 3 major stored-grain insects. J Stored Prod Res 2004; 40(5):553-564. doi: http://dx.doi.org/10.1016/j.jspr.2003.09.001
  • 48. Lee BH, Choi WS, Lee SE, Park BS. Fumigant toxicity of essential oils and their constituent compounds towards the rice weevil, Sitophilus oryzae (L.). Crop Prot 2001; 20(4):317-320. doi: http://dx.doi.org/10.1016/s0261-2194(00)00158-7
  • 49. Lee S, Peterson CJ, Coats JR. Fumigation toxicity of monoterpenoids to several stored product insects. J Stored Prod Res 2002; 39(1): 77-85. doi: http://dx.doi.org/10.1016/s0022-474x(02)00020-6
  • 50. Erler F. Fumigant activity of six monoterpenoids from aromatic plants in Turkey against two stored product pests confused flour beetle, Tribolium confusum, and Mediterranean flour moth, Ephestia kuehniella. J Plant Dis Prot 2005; 112(6): 602-611. doi: http://dx.doi.org/10.1007/bf03356158
  • 51. Ojimelukwe PC, Adler C. Potential of zimtaldehyde, 4-allyl-anisol, linalool, terpineol and other phytochemicals for the control of the confused flour beetle (Tribolium confusum J. d. V.) (Col., Tenebrionidae). Anzeiger für Schädlingskunde. J Pest Sci 1999; 72(4):81-86.
  • 52. Isman MB, Wan AJ, Passreiter CM. Insecticidal activity of essential oils to the tobacco cutworm, Spodoptera litura. Fitoterapia 2001; 72(1): 65-68. doi: http://dx.doi.org/10.1016/s0367-326x(00)00253-7
  • 53. Houghton PJ, Ren Y, Howes MJ. Acetyl-cholinesterase inhibitors from plants and fungi. Nat Prod Rep 2006; 23(2):181-199. doi: http://dx.doi.org/10.1002/chin.200632279
  • 54. Ge HM, Zhu CH, Shi da H, Zhang LD, Xie DQ, Yang J et al. Hopeahainol A: an acetylcholinesterase inhibitor from Hopea hainanensis. Chemistry 2008; 14(1):376-81. doi: http://dx.doi.org/10.1002/chem.200700960
  • 55. Enan EE. Molecular and pharmacological analysis of an octopamine receptor from American cockroach and fruit fly in response to plant essential oils. Arch Insect Biochem Physiol 2005; 59(3):161-171. doi:http://dx.doi.org/10.1002/arch.20076
  • 56. De-Oliveira ACAX, Ribeiro-Pinto LF, Paumgartten FJR. In vitro inhibition of CYP2B1 monooxygenase by b-myrcene and other monoterpenoid compounds. Toxicol Lett 1997; 92(1):39-46. doi: http://dx.doi.org/10.1016/s0378-4274(97)00034-9
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-12104cb0-c3e9-4537-99ac-9005e60e8271
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.