PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 79 | 3 |
Tytuł artykułu

Influence of rhythmic light stimulation on orientation signal within visual cortex columns in the cat

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study used optical imaging to investigate the development of the optical signal within orientational columns in primary visual cortex of cats reared under conditions of rhythmic light stimulation. Results showed that, although inter‑columnar spacing was unchanged, a 3‑5‑fold decrement in optical signal from orientation columns and a drastic decline in contrast sensitivity was observed in both areas 18 and 17. These data suggest the modification of cortical columnar functioning under artificially correlated synchronization of retinal input.
Słowa kluczowe
EN
Wydawca
-
Rocznik
Tom
79
Numer
3
Opis fizyczny
p.225-231,fig.,ref.
Twórcy
  • Pavlov Institute of Physiology Russian Academy of Sciences, Saint Petersburg, Russia
autor
  • Pavlov Institute of Physiology Russian Academy of Sciences, Saint Petersburg, Russia
autor
  • Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
Bibliografia
  • Bondar I, Minakova E, Ivanov R (2011) Using optical mapping of the inter‑ nal signal to test the function of the visual cerebral cortex in mammals. J Opt Technol 78: 56–62.
  • Burnat K, Van Der Gucht E, Waleszczyk WJ, Kossut  M, Arckens  L (2012) Lack of early pattern stimulation prevents normal development of the alpha (Y) retinal ganglion cell population in the cat. J Comp Neurol 520: 2414–2429.
  • Cang J, Rentería RC, Kaneko M, Liu X, Copenhagen DR, Stryker MP (2005) Development of precise maps in visual cortex requires patterned spon‑ taneous activity in the retina. Neuron 48: 797–809.
  • Chen G, Rasch MJ, Wang R, Zhang XH (2015) Experience‑dependent emer‑ gence of beta and gamma band oscillations in the primary visual cortex during the critical period. Sci Rep 5: 17847.
  • Daw NW (2014) Visual Development. Springer US, Branford. Ferster D (1990) X‑ and Y‑mediated synaptic potentials in neurons of areas 17 and 18 of cat visual cortex. Vis Neurosci 4: 115–133.
  • Grinvald A, Shoham D, Shmuel A, Glaser D, Vanzetta I, Shtoyerman E, Slovin H, Wijnbergen C, Hildesheim R, Arieli A (1999) In‑vivo optical im‑ aging of cortical architecture and dynamics. In: Modern techniques in neuroscience research (Windhorst U. and Johansson H., Eds.). Springer Verlag, Berlin, Germany, p. 893–969.
  • Hubel DH, Wiesel TN (1962) Receptive fi elds, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160: 106–154.
  • Hübener M, Shoham D, Grinvald A, Bonhoeff er T (1997) Spatial relation‑ ships among three columnar systems in cat area 17. J  Neurosci 17: 9270–9284.
  • Issa NP, Trepel C, Stryker MP (2000) Spatial frequency maps in cat visual cortex. J Neurosci 20: 8504–8514.
  • Kalatsky VA, Stryker MP (2003) New paradigm for optical imaging: tempo‑ rally encoded maps of intrinsic signal. Neuron 38: 529–545.
  • Kaschube M, Wolf F, Puhlmann M, Rathjen S, Schmidt K‑F, Geisel T, Löwel S (2003) The pattern of ocular dominance columns in cat primary visual cortex: intra‑ and interindividual variability of column spacing and its dependence on genetic background. Eur J Neurosci 18: 3251–3266.
  • Katz LC, Crowley JC (2002) Development of cortical circuits: lessons from ocular dominance columns. Nat Rev Neurosci 3: 34–42.
  • Luhmann HJ, Singer W, Martínez‑Millán L (1990) Horizontal interactions in cat striate cortex: I. Anatomical substrate and postnatal development. Eur J Neurosci 2: 344–357.
  • Merkulyeva N, Ivanov R, Bondar I (2015) Binocularly co‑activation modu‑ lates development of functional modular systems in cat’s visual cortex (in Russian). Zh Vyssh Nerv Deiat im Pavlova 65: 14–18.
  • Merkulyeva N, Mikhalkin A, Nikitina N, Makarov F (2012) Development of the connections of the primary visual cortex with the movement anal‑ ysis center: the role of the visual environment. Neurosci Behav Physiol 42: 1001–1007.
  • Merkulyeva N, Mikhalkin A, Zykin P (2018) Early postnatal development of the lamination in the lateral geniculate nucleus A‑layers in cats. Cell Mol Neurobiol 38: 1137–1143.
  • Michalski A, Wróbel A (1994) Correlated activity of lateral geniculate neu‑ rones in binocularly deprived cats. Acta Neurobiol Exp 54: 3–10.
  • Murphy PC, Duckett SG, Sillito AM (2000) Comparison of the laminar distri‑ bution of input from areas 17 and 18 of the visual cortex to the lateral geniculate nucleus of the cat. J Neurosci 20: 845–853.
  • Schmidt KE, Singer W, Lowel S (2008) Binocular phasic coactivation does not prevent ocular dominance segregation. Front Biosci 13: 3381–3390.
  • Sengpiel F, Stawinski P, Bonhoeffer T (1999) Influence of experience on orientation maps in cat visual cortex. Nat Neurosci 2: 727–732.
  • Sherman SM, Spear PD (1982) Organization of visual pathways in normal and visually deprived cats. Physiol Rev 62: 738–855.
  • Shumikhina S, Bondar I, Svinov  M (2018) Dynamics of stability of orien‑ tation maps recorded with optical imaging. Neuroscience 374: 49–60.
  • Singer W (1999) Neuronal synchrony: a versatile code for the definition of relations? Neuron 24: 49–65.
  • Stryker MP, Strikland SL (1984) Physiological segregation of ocular dom‑ inance columns depends on the pattern of afferent electrical activity. Investig Ophthalmol Vis Sci 25: 278.
  • Stryker MP, Zahs KR (1983) On and off sublaminae in the lateral geniculate nucleus of the ferret. J Neurosci 3: 1943–1951.
  • Weliky M, Katz LC (1997) Disruption of orientation tuning in visual cortex by artificially correlated neuronal activity. Nature 386: 680–685.
  • Wiesel TN, Hubel DH (1963) Single‑cell responses in striate cortex of kittens deprived of vision in one eye. J Neurophysiol 26: 1003–1017.
  • Wróbel A, Ghazaryan A, Bekisz M, Bogdan W, Kamiński J (2007) Two streams of attention‑dependent beta activity in the striate recipient zone of cat’s lateral posterior‑pulvinar complex. J Neurosci 27: 2230–2240.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-11cf02d3-2a71-41c3-b491-78acdcf38f0d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.