PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 32 | 4 |

Tytuł artykułu

Environmental influence of cultural medium on bioherbicidal activities of Pseudomonas aeruginosa C1501 on mono and dico weeds

Warianty tytułu

PL
Wpływ środowiska hodowlanego na aktywność fitotoksyczną Pseudomonas aeruginosa C1501 w zwalczaniu chwastów jedno- i dwuliściennych

Języki publikacji

EN

Abstrakty

EN
Microbe producing natural herbicides are alternatives to the chemical herbicidal formulations. The effect of minerals and carbon sources were screened to select the best when combined and when apply singly during submerged fermentation. The effect of their phytotoxic metabolites was tested on Chromolaena odorata and Echinochola crus-galli. It was observed that the best combination between all the mineral was found in the combination containing manganese, zinc, bromine and iron. It gave the highest bio-herbicidal activities on the tested weeds when compared with the basal medium without any mineral amendment (P ≤ 0.05). The best carbon source screened was glucose while the best mineral screened was iron in term of showing activities on the tested weeds (P ≤ 0.05).
PL
Mikroorganizmy wytwarzające naturalne herbicydy są alternatywą dla chemicznych preparatów chwastobójczych. Badano wpływ soli mineralnych i źródeł węgla na wydajność fermentacji podczas osobnego i łącznego ich stosowania. Wpływ fitotoksyczności uzyskanych metabolitów testowano na Chromolaena odorata i Echinochloa crus-galli. Wykazano, że spośród wszystkich badanych pierwiastków kombinacja zawierająca mangan, cynk, brom i żelazo dała najwyższą biologiczną aktywność chwastobójczą w porównaniu z podstawową pożywką bez zmiany składu mineralnego (P ≤ 0,05). Pod względem aktywności fitotoksycznej najlepszym źródłem węgla była glukoza, a najlepszym pierwiastkiem żelazo (P ≤ 0,05).

Wydawca

-

Rocznik

Tom

32

Numer

4

Opis fizyczny

p.659-670,fig.,ref.

Twórcy

  • Department of Biological Sciences, Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Landmark University in Omu-Aran, Kwara State, Nigeria
  • Department of Pure and Applied Biology, Ladoke Akintola University of Technology in Ogbomoso, Oyo State, Nigeria
  • Department of Molecular Biology, Institute of Microbial Technology in Chandigarh, Chandigarh, India
autor
  • Department of Pure and Applied Biology, Ladoke Akintola University of Technology in Ogbomoso, Oyo State, Nigeria
autor
  • Department of Molecular Biology, Institute of Microbial Technology in Chandigarh, Chandigarh, India
autor
  • Department of Biological Sciences, Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Landmark University in Omu-Aran, Kwara State, Nigeria

Bibliografia

  • ADETUNJI C.O., OLOKE J.K. 2013. Efficacy of freshly prepared pesta granular formulations from the multi-combination of wild and mutant strain of Lasiodiplodia pseudotheobromae and Pseudomonas aeruginosa. Albanian J. Agric Sci., 12: 555–563.
  • ADETUNJI C.O. 2015. Mycoherbicidal potentials of Lasiodiplodia Pseudomonas and Pseudomonas aeruginosa formulation in the control of weeds in Cowpea – maize field (Ph.d thesis), LAUTECH Ogbomosho, Nigeria, pp. 88–91.
  • BARRETO R.W. 2009. Controle biológico de plantas daninhas com fitopatógenos. In: Biocontrole de doencas de plantas: uso e perspectivas. Jaguarixna: Embrapa Meio Ambiente. Eds. W. Bettiol, M.A.B Morandi, pp. 101–128.
  • BOYETCHKO S.M. 1999. Innovative application of microbial agents for biological weed control. In: Biotechnological approaches in biocontrol of plant pathogens. Eds. K.G. Mukerji, B.P. Chamola, R.K. Updahyay. Kluwer Academic/ Plenum, New York, pp. 73–97.
  • BOYETCHKO S.M., ROSSKOPF E.N., CAESAR A.J., CHARUDATTAN R. 2002. Biological weed control with pathogens: search for candidates to applications. In: Applied mycology and biotechnology, vol. 2. Agriculture and food production. Eds. G.G. Khachatourians, D.K. Arora. The Netherlands: Elsevier Science B.V, pp. 239–274.
  • DAIGLE D.J., CONNICK W.J., BOYETTE C.D., LOVISA M.P., WILLIAMS K.S., ERIKSSON T., BORJESSON J., TJERNELD F. 2002. Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme Microbiology Technology, 31: 353–64.
  • DRIESCHE VAN R.G., CARRUTHERS R.I., CENTER T., HODDLE M.S., HOUGH-GOLDSTEIN J., MORIN L., SMITH L., WAGNER D.L. 2010. Classical biological control for the protection of natural ecosystems. Biology Control., 54: 2–33.
  • DUFFY B.K, DÉFAGO G. 1997. Zinc improves biocontrol of fusarium crown and root rot of tomato by Pseudomonas fluorescens and represses the production of pathogen metabolites inhibitory to bacterial antibiotic biosynthesis. Phytopathology, 87: 1250–1257.
  • DUFFY B.K, DÉFAGO G. 1999. Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Applied and Environmental Microbiology, 65: 2429–2438.
  • EMANUILOVA E.I., KAMBOUROVA M.S. 1992. Effect of carbon source and dissolved oxygen level on cell growth and pullulanase production by Bacillus stearothermophilus G-82. World Journal of Microbiology and Biotechnology, 8(1): 21–3.
  • FONTES E.M.G. 1992. Controle biológico: um desafio para o Pats. Pesquisa Agropecua` ria Brasileira, Brasilia, DF. 27(1): 1–4.
  • GRESHAM R.L, INAMINE E. 1986. Nutritional improvement of process. In: Manual of Industrial Microbiology and Biotechnology. Eds. A.L. Demain, N.A. Solomon. Washington: ASM, pp. 41–48.
  • HYNES R.K., BOYETCHKO S.M. 2006. Research initiatives in the art and science of biopesticide formulations. Soil Biology and Biochemistry, 38: 845–849.
  • JONSBU E., MCINTYRE M., NIELSEN J. 2002. The influence of carbon source and morphology on nystatin production by Streptomyces noursei. Journal of Biotechnology, 95: 133–144.
  • KENNEDY A.C., YOUNG F.L., ELLIOTT L.F., DOUGLAS C.L. 1991. Rhizobacteria suppressive to the weed downy brome. Soil Science Society of America Journal, 55: 722–727.
  • KREMER R.J., BEGONIA M.F.T., STANLEY L., LANHAM E.T. 1990. Characterization of rhizobacteria associated with weed seedlings. Applied and Environmental Microbiology, 56: 1649–1655.
  • LORENZI H. 2000. Plantas daninhas do Brasil: terrestres, aquhticas, parasitas, tóxicas e medicinais. 3. ed. Instituto Plantarum, Nova Odessa.
  • NAMPOOTHIRI K.M., PANDEY A. 1995. Effect of different carbon sources on growth and glutamic acid fermentation by Brevibacterium sp. Journal of basic Microbiology, 35(4): 249–254.
  • NEIDHARDT F.C., INGRAHAM J.L., SCHAECHTER M. 1990. Physiology of the bacterial cell. Sinauer Associates Inc., pp. 507.
  • NAMPOOTHIRI K.M., PANDEY A. 1995. Effect of different carbon sources on growth and glutamic acid fermentation by Brevibacterium sp. Journal of Basic Microbiology, 35(4): 249–254.
  • OLIVEIRA JÚNIOR R.S., INOUE M.H. 2011. Seletividade de herbicidas para culturas e plantas daninhas. In: Oliveira Jxnior R.S. Constantin J., Inoue M.H. Biologia e manejo de plantas daninhas. Curitiba: Omnipax, pp. 243–262.
  • OVERBEEK VAN L.S., EBERL L., GIVSKOV M., MOLIN S., VAN ELSAS J.D. 1995. Survival of and induced stress resistance in, carbon-starved Pseudomonas fluorescens cells residing in soil. Applied and Environmental Microbiology, 61: 4202–4208.
  • OWNLEY B.H., DUFFY B.K, WELLER D.M. 2003. Identification and manipulation of soil properties to improve the biological control performance of phenazine-producing Pseudomonas fluorescens. Applied and Environmental Microbiology, 69: 3333–334.
  • SANCHEZ S., DEMAIN A.L. 2002. Metabolic regulation of fermentation process. Enzyme Microb Technol., 31: 895–906.
  • SAS Institute. Statistical Analysis System. 2001. Version 8.2 for Windows. Cary, NY: SAS Institute.
  • SLININGER P.J., JACKSON M.A. 1992. Nutritional factors regulating growth and accumulation of phenazine 1-carboxylic acid by Pseudomonas fluorescens 2–79. Applied Microbiology and Biotechnology, 37: 388–392.
  • SLININGER P.J., VAN CAUWENBERGE J.E., BOTHAST R.J., WELLER D.M., THOMASHOW L.S., COOK R.J. 1996. Effect of growth culture physiological state, metabolites, and formulation on the viability, phytotoxicity, and efficacy of the take-all biocontrol agent Pseudomonas fluorescens 2–79 stored encapsulated on wheat seeds. Applied Microbiology and Biotechnology, 45: 391–398.
  • ZHANG D., SCHISLER A., BOEHM M.J., SLININGER P.J. 2005. Carbon-to-nitrogen ratio and carbon loading of production media influence freeze-drying survival and biocontrol efficacy of Cryptococcus nodaensis OH 182.9. Phytopathology, 95: 626–631.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-118096c3-8147-47cc-abc2-a092e1295c5f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.