PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 61 | 1 |
Tytuł artykułu

Morphology and histology of dorsal spines of the xenacanthid shark Orthacanthus platypternus from the Lower Permian of Texas, USA: palaeobiological and palaeoenvironmental implications

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Detailed studies on Carboniferous species of the xenacanth Orthacanthus have shown that the xenacanth dorsal fin spine can be used for skeletochronological analyses and provides valuable information about development, growth and environmental life conditions of those extinct sharks. We report here for the first time the histology and skeletochronology of Permian specimens, dorsal spines of Orthacanthus platypternus from the Craddock Bone Bed (lower Clear Fork Formation; Early Permian, Leonardian age) of northern Baylor County (north-central Texas, USA). Twelve dorsal spines of O. platypternus preserve a highly vascularized wall mainly composed of centrifugally growing dentine in a succession of dentine layers, probably deposited with an annual periodicity. As expected, spines of individuals with 1–2 dentine layers, presumably juveniles, present the smallest sizes. However, spines of individuals showing at least 3–4 dentine layers and interpreted to be subadults/young adults, are distributed in two spine-size clusters corresponding to females (probably the largest spines) and males, in agreement with the hypothesis of sexual size dimorphism proposed in a previous biometric analysis. Our comparative study of O. platypternus and the Stephanian species O. meridionalis further suggests that spine denticulation can be useful for distinguishing between species of Orthacanthus and sexually dimorphic forms (juvenile to adults) in each species. Total body length estimations of O. platypternus from the Craddock Bone Bed point to relatively large juveniles and small subadults/young adults (less than 2 m in total length), living as opportunistic predators in the pond-channel coastal plain environments represented by the bone bed deposits. The comparative analyses of the ontogenetic stages of the recorded specimens of O. platypternus and their distribution along different facies and localities indicate that this species was euryhaline, diadromous with a catadromous life-cycle which was strongly regulated by the semi-arid, seasonally dry tropical climate affecting western Pangaea during the Early Permian.
Wydawca
-
Rocznik
Tom
61
Numer
1
Opis fizyczny
p.97-117,fig.,ref.
Twórcy
autor
  • Department of Biology, Midwestern State University, 3410 Taft Boulevard, Wichita Falls, TX 76308, USA
  • Museum fur Naturkunde–Leibniz, Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, 10115, Berlin, Germany
  • Department of Geology, Midwestern State University, 3410 Taft Boulevard, Wichita Falls, TX 76308, USA
autor
  • Department of Biology, Midwestern State University, 3410 Taft Boulevard, Wichita Falls, TX 76308, USA
Bibliografia
  • Agassiz, L. 1843. Recherches sur les Poissons fossiles. Volume 3. Contenant l’Histoire de l’Ordre des Placoïdes. 422 pp. Petitpierre, Neuchâtel.
  • Barnett, L.A.K., Ebert, D.A., and Cailliet, G.M. 2009. Assessment of the dorsal fin spine for chimaeroid (Holocephali: Chimaeriformes) age estimation. Journal of Fish Biology 75: 1258–1270.
  • Beck, K. 2014. Comparative Bone Histology Among Permian Vertebrates, Arroyo Formation, North Texas. 104 pp. M.Sc. thesis, Midwestern State University, Wichita Falls, Texas.
  • Berg, L.S. 1940. Classification of fishes, both recent and fossil [in Russian]. Trudy Zoologičeskogo Instituta Akademii Nauk 5: 85–517.
  • Botella, H., Martinez-Perez, C., and Soler-Gijón, R. 2012. Machaeracanthus goujeti n. sp. (Acanthodii) from the Lower Devonian of Spain and northwest France, with special reference to spine histology. Geodiversitas 34: 761–783.
  • Broili, F. 1904. Ueber Diacranodus texensis Cope (= Didymodus? compressus Cope). Neues Jahrbuch für Mineralogie, Geologie und Paläontologie 19: 467–484.
  • Cailliet, G.M. and Goldman, K.J. 2004. Age determination and validation in chondrichthyan fishes. In: J.C. Carrier, J.A. Musick, and M.R. Heithaus (eds.), Biology of Sharks and Their Relatives, 399–447. CRC Press LLC, Boca Raton.
  • Cailliet, G.M. and Radtke, R.L. 1987. A progress report on the electron microprobe analysis technique for age determination and verification in elasmobranchs. In: R.C. Summerfelt and G.E. Hall (eds.), The Age and Growth of Fish, 359–369. Iowa State University Press, Ames.
  • Carpenter, D., Falcon-Lang, H.J., Benton, M.J., and Nelson, W.J. 2011. Fishes and tetrapods in the Upper Pennsylvanian (Kasimovian) Cohn Coal Member of the Mattoon Formation of Illinois, United States: Systematics, paleoecology, and paleoenvironmnents. Palaios 26: 639–657.
  • Case, E.C. 1935. Description of a collection of associated skeletons of Trimerorhachis. Contributions from the Museum of Paleontology, University of Michigan, Ann Arbor, Michigan 4: 227–274.
  • Chaney, D.S. and DiMichele, W.A. 2007. Paleobotany of the classic redbeds (Clear Fork Group—Early Permian) of north central Texas. In: T.E. Wong (ed.), Proceedings of the XVth International Congress of Carboniferous and Permian Stratigraphy, Utrecht, The Netherlands, 357–366. Royal Netherlands Academy of Arts and Sciences, Amsterdam.
  • Clarke, M.W., Connolly, P.L., and Bracken, J.J. 2002. Age estimation of the exploited deepwater shark Centrophorus squamosus from the continental slopes of the Rockall Trough and Porcupine Bank. Journal of Fish Biology 60: 501–514.
  • Cope, E.D. 1878. Descriptions of extinct Batrachia and Reptilia from the Permian Formation of Texas. Proceedings of the American Philosophical Society 17: 505–530.
  • Cope, E.D. 1884. On the structure of the skull in the elasmobranch genus Didymodus. Proceedings of the American Philosophical Society 21: 572–590.
  • Currey, J.D. 2006. Bones: Structure and Mechanics. Ed. 2. 436 pp. Princeton University Press, Princeton.
  • Dick, J.R.F. 1981. Diplodoselache woodi gen. and sp. nov., an Early Carboniferous shark from the Midland Valley of Scotland. Transactions of the Royal Society of Edinburgh, Earth Sciences 72: 99–113.
  • DiMichele, W.A., Tabor, N.J., Chaney, D.S., and Nelson, W.J. 2006. From wetlands to wet spots: Environmental tracking and the fate of Carboniferous elements in Early Permian tropical floras. In: S.E. Grab and W.A. DiMichele (eds.), Wetlands Through Time. Geological Society of America, Special Paper 399: 223–248.
  • Donelan, C. and Johnson, G.D. 1997. Orthacanthus platypternus (Chondrichthyes: Xenacanthida) occipital spines from the Lower Permian Craddock Bonebed, Baylor County, Texas. Journal of Vertebrate Paleontology 17 (Supplement): 43A.
  • Evans, H.M. 1924. The defensive spine of fishes, living and fossil, and the glandular structure in connection therewith, with observations on the nature of fish venoms. Philosophical Transactions of the Royal Society London, Series B 212: 1–33.
  • Fischer, J., Licht, M., Kriwet, J., Schneider, J.W., Buchwitz, M., and Bartsch, P. 2014a. Egg capsule morphology provides new information about the interrelationships of chondrichthyan fishes. Journal of Systematic Palaeontology 12: 389–399.
  • Fischer, J., Schneider, J.W., Hodnett, J.-P.M., Elliott, D.K., Johnson, G.D., Voigt, S., Joachimski, M.M., Tichomirowa, M., and Götze, J. 2014b. Stable and radiogenic isotope analyses on shark teeth from the Early to the Middle Permian (Sakmarian–Roadian) of the southwestern USA. Historical Biology 26: 710–727.
  • Fischer, J., Schneider, J.W., Voigt, S., Joachimski, M., Tichomirowa, M., Tütken, T., Götze, J., and Berner, U. 2013. Oxygen and strontium isotopes from fossil shark teeth: Environmental and ecological implications for Late Palaeozoic European basins. Chemical Geology 342: 44–62.
  • Fischer, J., Voigt, S., Schneider, J.W., Buchwitz, M., and Voigt, S. 2011. A selachian freshwater fauna from the Triassic of Kyrgyzstan and its implications for Mesozoic shark nurseries. Journal of Vertebrate Paleontology 31: 937–953.
  • Fritsch, A. 1889. Fauna der Gaskohle und der Kalksteine der Permformation Böhmens, v. 2. 114 pp. F. Rivnác, Praha.
  • Glikman, L.S. 1964. Class Chondrichthyes, subclass Elasmobranchii [in Russian]. In: Û.A. Orlov (ed.), Osnovy Paleontologii, 11. Agnathes, Pisces, 195–236. Nauka, Moskva.
  • Grogan, E.D. and Lund, R. 2004. The origin and relationships of Early Chondrichthyes. In: J.C. Carrier, J.A. Musick, and M.R. Heithaus (eds.), Biology of Sharks and Their Relatives, 3–31. CRC Press LLC, Boca Raton.
  • Guallart-Furió, J. 1998. Contribución al conocimiento de la biología y la taxonomía del tiburón batial Centrophorus granulosus (Bloch y Schneider, 1801) (Elasmobranchii, Squalidae) en el Mar Balear (Mediterráneo Occidental). 275 pp. Tesis Doctoral, Universitat de València, Valencia. Hampe, O. 1997. Zur funktionellen Deutung des Dorsalstachels und der Placoidschuppen der Xenacanthida (Chondrichthyes: Elasmobranchii; Unterperm). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 206: 29–51.
  • Hampe, O. 2003. Revision of the Xenacanthidae (Chondrichthyes: Elasmobranchii) from the Carboniferous of the British Isles. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 93: 191–237.
  • Hampe, O., Johnson, G.D., and Turner, S. 2006. Dicentrodus (Chondrichthyes: Xenacanthida) from the Early Carboniferous (Visean: upper St Louis Formation) of Iowa, USA. Geological Magazine 143: 545–549.
  • Heidtke, U.-H.J. 1982. Der Xenacanthide Orthacanthus senckenbergianus aus dem pfälzischen Rotliegenden (Unter-Perm). Mitteilungen der Pollichia 70: 65–86.
  • Heidtke, U.-H.J. 1998. Revision der Gattung Orthacanthus Agassiz 1843 (Chon drichthyes: Xenacanthida). Paläontologische Zeitschrift 72: 135–147.
  • Heidtke, U.-H.J. 1999. Orthacanthus (Lebachacanthus) senckenbergianus Fritsch 1889 (Xenacanthida: Chondrichthyes): Revision, Organisation und Phylogenie. Freiberger Forschungsheft C481: 63–106.
  • Heidtke, U.-H.J. 2003. Neue Rekonstruktionen xenacanthider Haie aus dem Permokarbon des Saar-Nahe-Beckens (SW-Deutschland). Mitteilungen der Pollichia 90: 19–28.
  • Heidtke, U.-H.J. 2007. Neue Erkenntnisse über Lebachacanthus (Chondrichthyes: Xenacanthida) aus dem Unteren Rotliegend des südwestdeutschen Saar-Nahe-Beckens. Mitteilungen der Pollichia 93: 7–14.
  • Heidtke, U.-H.J. 2012. Weitere Erkenntnisse über Lebachacanthus colosseus (Elasmobranchii: Xenacanthida) aus der mittleren Meisenheim- Formation (Autunium, Unterperm) von Niederkirchen (Pfalz). Mitteilungen der Pollichia 96: 1–4.
  • Heidtke, U.-H.J. and Schwind, C. 2004. Über die Organisation des Skelettes der Gattung Xenacanthus (Elasmobranchii: Xenacanthida) aus dem Unterperm des südwestdeutschen Saar-Nahe-Beckens. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 231: 85–117.
  • Heidtke, U.-H.J., Schwind, C., and Krätschmer, K. 2004. Über die Organisation des Skelettes und die verwandschaftlichen Beziehungen der Gattung Triodus Jordan 1849 (Elasmobranchii: Xenacanthida). Mainzer geowissenschaftliche Mitteilungen 32: 9–54.
  • Heyler, D. and Debriette, P. 1986. Sur les Xénacanthiformes (Poissons, élasmobranches), à la lumière de découvetes récentes dans le Permo- Carbonifère de France. Actes du llle Congrès National des Sociétés Savantes, Section des Sciences 1: 89–109.
  • Hotton, N. III 1952. Jaws and teeth of American xenacanth sharks. Journal of Paleontology 26: 489–500.
  • Huxley, T.H. 1880. On the application of the laws of evolution to the arragement of the Vertebrata and more particularly of the Mammalia. Proceedings of the Scientific Meetings of the Zoological Society of London 1880: 649–652.
  • Irvine, S.B., Stevens, J.D., and Laurenson, L.J.B. 2006a. Comparing external and internal dorsal-spine bands to interpret the age and growth of the giant lantern shark, Etmopterus baxteri (Squaliformes: Etmopteridae). Environmental Biology of Fishes 77: 253–264.
  • Irvine, S.B., Stevens, J.D., and Laurenson, L.J.B. 2006b. Surface bands on deepwater squalid dorsal-fin spines: an alternative method for ageing Centroselachus crepidater. Canadian Journal of Fisheries and Aquatic Sciences 63: 617–627.
  • Johnson, G.D. 1999. Dentitions of late Paleozoic Orthacanthus species and new species of ?Xenacanthus (Chondrichthyes: Xenacanthiformes) from North America. Acta Geologica Polonica 49: 215–266.
  • Johnson, G.D. 2012. Possible origin of the xenacanth sharks Orthacanthus texensis and Orthacanthus platypternus in the Lower Permian of Texas, USA. Historical Biology 24: 369–379.
  • Johnson, G.D. 2013. Xenacanth sharks and other vertebrates from the Geraldine Bonebed, Lower Permian of Texas. New Mexico Museum of Natural History and Science, Bulletin 60: 161–167.
  • Krätschmer, K. 2004. Überblick über die wichtigsten vertebratenführenden Fossilhorizonten im Rotliegend des südwestdeutschen Saar-Nahe- Beckens. Teil 1: Odernheim Schichten, Jeckenbach Schichten. Geowissenschaftliche Beiträge zum Saarpfälzischen Rotliegenden 2: 53–86
  • Krätschmer, K. 2005. Überblick über die wichtigsten vertebratenführenden Fossilhorizonten im Rotliegend des südwestdeutschen Saar-Nahe- Beckens. Teil 2. Geowissenschaftliche Beiträge zum Saarpfälzischen Rotliegenden 3: 1–28.
  • Lamm, E.T. 2013. Preparation and sectioning of specimens. In: K. Padian and E.T. Lamm (eds.), Bone Histology of Fossil Tetrapods, Advancing Methods, Analysis, and Interpretations, 55–160. University of California Press, Berkeley.
  • Laurin, M. and Soler-Gijón, R. 2010. Osmotic tolerance and habitat of early stegocephalians: indirect evidence from parsimony, taphonomy, palaeobiogeography, physiology and morphology. In: M. Vercoli, G. Clément, and B. Meyer-Berthaud (eds.), The Terrestrialization Process: Modeling Complex Interactions at the Biosphere-Geosphere Interface. Geological Society, London, Special Publication 339: 151–179.
  • Lecomte, F., Boujard, T., Meunier, F.J., Renno, J.-F., and Rojas-Beltran, R. 1993. The growth of Myleus rhomboidalis (Cuvier, 1817) (Characiforme, Serrasalmidae) in two rivers of French Guiana. Revue d’Ecologie (Terre Vie) 48: 421–435.
  • Lowe-McConnell, R.H. 1964. The fishes of the Rupununi savanna district of British Guiana, South America. Part 1. Ecological groupings of fish species and effects of the seasonal cycle on the fish. Journal of the Linnean Society, London 45: 103–144.
  • Luer, C.A., Blum, P.C., and Gilbert, P.W. 1990. Rate of tooth replacement in the nurse shark, Ginglymostoma cirratum. Copeia 1990: 182–191.
  • Maisey, J.G. 1978. Growth and form of finspines in hybodont sharks. Palaeontology 21: 657–666.
  • Maisey, J.G. 1979. Finspine morphogenesis in squalid and heterodontid sharks. Zoological Journal of the Linnean Society 66: 161–183.
  • Maisey, J.G. 2009. The spine-brush complex in symmoriiform sharks (Chondrichthyes; Symmoriiformes), with comments on dorsal fin modularity. Journal of Vertebrate Paleontology 29:14–24.
  • Martin, R.A. 2005. Conservation of freshwater and euryhaline elasmobranchs: a review. Journal of the Marine Biological Association of the United Kingdom 85: 1049–1073.
  • Murry, P.A. and Johnson, G.D. 1987. Clear Fork vertebrates and environments from the Lower Permian of North-Central Texas. The Texas Journal of Science 39: 253–266.
  • Nelson, W.J., Hook, R.W., and Chaney, D.S. 2013. Lithostratigraphy of the Lower Permian (Leonardian) Clear Fork Formation of North-Central Texas. New Mexico Museum of Natural History and Science Bulletin 60: 286–311.
  • Olson, E.C. 1952. The evolution of a Permian vertebrate chronofauna. Evolution 6: 181–196.
  • Olson, E.C. 1977. Permian lake faunas: a study in community evolution. Journal of the Paleontological Society of India 20: 146–163.
  • Olson, E.C. 1989. The Arroyo Formation (Leonardian: Lower Permian and its vertebrate fossils. Texas Memorial Museum Bulletin 35: 1–25.
  • Parrish, W.C. 1978. Paleoenvironmental analysis of a Lower Permian bonebed and adjacent sediments, Wichita County, Texas. Palaeogeography, Palaeoclimatology, Palaeoecology 24: 209–237.
  • Phillips, N. 2012. Conservation genetics of Pristis sawfishes in Australian waters. 246 pp. Ph.D. Dissertation, Murdoch University, Perth, Western Australia.
  • Poplin, C. and Heyler, D. 1989. Èvolution et phylogénie des Xenacanthiformes (= Pleuracanthiformes) (Pisces, Chondrichthyes). Annales de Paléontologie (Vertébrés-Invertébrés) 75: 187–222.
  • Probst, E. 1986. Deutschland in der Urzeit. Von der Entstehung des Lebens bis zum Ende der Eiszeit. 479 pp. Orbis Verlag, München.
  • Ramos, R.O. 2007. Age and growth estimates for the Port Jackson shark, Heterodontus portusjacksoni (Mayer, 1793) from New South Wales, Australia. 222 pp. Ph.D. Dissertation, University of Newcastle, Newcastle.
  • Robins, J., Mayer, D., Staunton-Smith, J., Halliday, I., Sawynok, B., and
  • Sellin, M. 2006. Variable growth rates of the tropical estuarine fish barramundi Lates calcarifer (Bloch) under different freshwater flow conditions. Journal of Fish Biology 69: 379–391.
  • Romer, A.S. 1957. The appendicular skeleton of the Permian embolomerous amphibian Archeria. Contributions of the Museum of Paleontology, University of Michigan, Ann Arbor, Michigan 13: 103–159.
  • Sander, P.M. 1987. Taphonomy of the Geraldine Bonebed in Archer County, Texas. Palaeogeography, Palaeoclimatology, Palaeoecology 61: 221–236.
  • Sander, P.M. 1989. Early Permian depositional environments and pond bonebeds in central Archer County, Texas. Palaeogeography, Palaeoclimatology, Palaeoecology 69: 1–21.
  • Schneider, J.W., and Zajíc, J. 1994. Xenacanthiden (Pisces, Chondrichthyes) des mitteleuropäischen Oberkarbon und Perm—Revision der Originale zu Goldfuss 1847, Beyrich 1848, Kner 1867 und Fritsch 1879–1890. Freiberger Forschungsheft C452: 101–151.
  • Schultze, H.-P. 1985. Marine to onshore vertebrates in the Lower Permian of Kansas and their paleoenvironmental implications. University of Kansas Paleontological Contributions, Paper 113: 1–18.
  • Schultze, H.-P. 1995. Terrestrial biota in coastal marine deposits: Fossillagerstätten in the Pennsylvanian of Kansas, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 119: 255–273.
  • Schultze, H.-P. 1998. The Fossil Record of the Intertidal Zone. In: M.H. Horn, K.L.M. Martin, and M.A. Chotkowski (eds.), Intertidal Fishes. Life in Two Worlds, 373–392. Academic Press, San Diego.
  • Schultze, H.-P. 2009. Interpretation of marine and freshwater environments in Permo-Carboniferous deposits. Palaeogeography, Palaeoclimatology, Palaeoecology 281: 126–136.
  • Schultze, H.-P. 2013. The palaeoenvironments at the transition from piscine to tetrapod sarcopterygians. New Mexico Museum of Natural History and Science Bulletin 60: 373–397.
  • Schultze, H.-P. and Soler-Gijón, R. 2004. A xenacanth clasper from the suppermost Carboniferous–Lower Permian of Buxières-les-Mines (Massif Central, France) and the palaeoecology of the European Permo- Carboniferous basins. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 232: 325–363.
  • Schultze, H.-P., Maples, C.G., and Cunningham, C.R. 1994. The Hamilton Konservat-Lagerstätte: Stephanian terrestrial biota in a marginal-marine setting. Transactions of the Royal Society of Edinburgh: Earth Sciences 84: 443–451.
  • Schwind, C. 1991. Zur Organisation und zur Phylogenie der beiden Gattungen Triodus and Xenacanthus. 201 pp. Unpublished Ph.D. Dissertation, Mainz University, Mainz.
  • Simpfendorfer, C.A., Freitas, G.G., Wiley, T.R., and Heupel, M.R. 2005. Distribution and habitat partitioning of immature bull sharks (Carcharhinus leucas) in a southwest Florida estuary. Estuaries 28: 78–85.
  • Simpson, L.C. 1976. Paleontology of the Garber Formation (Lower Permian), Tillman County, Oklahoma. 216 pp. M.Sc. Thesis, University of Oklahoma, Norman.
  • Simpson, L.C. 1979. Upper Gearyan and lower Leonardian terrestrial vertebrate faunas of Oklahoma. Oklahoma Geology Notes 39: 3–21.
  • Soler-Gijón, R. 1993. Estudio de los Vertebrados fósiles del Carbonífero superior de Puertollano, Ciudad Real. 293 pp. Ph.D. Thesis, University of Complutense, Madrid.
  • Soler-Gijón, R. 1995. Evidence of predator-prey relationship in xenacanth sharks of the Upper Carboniferous (Stephanian C) from Puertollano, Spain. In: H. Lelievre, S. Wenz, A. Blieck, and R. Cloutier (eds.), Premiers vertébrés et vertébrés inférieurs. Geobios, Mémoire Spécial 19: 151–156.
  • Soler-Gijón, R. 1997a. New discoveries of xenacanth sharks from the Late Carboniferous of Spain (Puertollano Basin) and Early Permian of Germany (Saar-Nahe Basin): implications for the phylogeny of xenacanthiform and anacanthous sharks. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 205: 1–31.
  • Soler-Gijón, R. 1997b. Orthacanthus meridionalis, a new xenacanth shark (Elasmobranchii) from the Upper Carboniferous of the Puertollano basin, Spain. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 204: 141–169.
  • Soler-Gijón, R. 1999. Occipital Spine of Orthacanthus (Xenacanthidae, Elasmobranchii): Structure and Growth. Journal of Morphology 242: 1–45.Soler-Gijón, R. 2000. Phylogenetic relationships of Lebachacanthidae Soler- Gijón 1997 (Xenacanthiformes; Elasmobranchii). Paläontologische Zeitschrift 74: 363–377.
  • Soler-Gijón, R. 2004. Development and growth in xenacanth sharks: new data from Upper Carboniferous of Bohemia. In: G. Arratia, M.V.H. Wilson, and R. Cloutier (eds.), Recent Advances in the Origin and Early Radiation of Vertebrates, 533–562. Verlag Dr. Friedrich Pfeil, Munchen.
  • Soler-Gijón, R. and Moratalla, J.J. 2001. Fish and tetrapod trace fossils from the Upper Carboniferous of Puertollano, Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 171: 1–28.
  • Soler-Gijón, R. and Siebert, E. 2001. Zeitmesser der Entwicklung. Skelettechronologische Untersuchungen an fossilen Haien. Theatrum naturae. Paläontologie 1: 32–34.
  • Stamberg, S. 2001. Fin spine of a ctenacanthoid shark (Elasmobranchii, Ctenacanthoidea) from the Upper Stephanian of the Krkonose Piedmont Basin (Bohemia). Bulletin of the Czech Geological Survey 76: 141–148.
  • Sternberg, C.H. 1903. The Permian life of Texas. Transactions of the Kansas Academy of Science 18: 94–98.
  • Tabor, N.J. and Montañez, I.P. 2004. Morphology and distribution of fossil soils in the Permo-Pennsylvanian Wichita and Bowie Groups, North Central Texas, USA: implications for western equatorial Pangean palaeoclimate during icehouse-greenhouse transition. Sedimentology 51: 851–884.
  • Thorburn, D.C., Morgan, D.L., Rowland, A.J., and Gill, H.S. 2007. Freshwater sawfish Pristis microdon Latham, 1794 (Chondrichthyes: Pristidae) in the Kimberley region of Western Australia. Zootaxa 1471: 27–41.
  • Tovar-Avila, J., Izzo, C., Walker, T.I., Braccini, J.M., and Day, R.W. 2008. Dorsal-fin spine growth of Heterodontus portusjacksoni: a general model that applies to dorsal-fin spines of chondrichthyans? Canadian Journal of Fisheries and Aquatic Sciences 65: 74–82.
  • Tsukamoto, K., Miller, M.J., Kotake, A., Aoyama, J., and Uchida, K. 2009. The origin of fish migration: the random escapement hypothesis. American Fisheries Society Symposium 69: 45–61.
  • Turner, S. and Burrow, C.J. 2011. A Lower Carboniferous xenacanthiform shark from Australia. Journal of Vertebrate Paleontology 31: 241–257.
  • Turner-Walker, G. 2008. The chemical and microbial degradation of bones and teeth. In: R. Pinhasi and S. Mays (eds.), Advances in Human Palaeopathology, 3–29. The Atrium, Southern Gate, Chichester.
  • White, C.A. 1889. On the Permian formation of Texas. American Naturalist 23: 109–128.
  • Williston, S.W. 1909. The faunal relations of the early vertebrates. Journal of Geology 17: 389–402.
  • Williston, S.W. 1911. Restoration of Seymouria baylorensis broili, an American cotylosaur. Journal of Geology 19: 232–237.
  • Zidek, J. 1992. Late Pennsylvanian Chondrichthyes, Acanthodii and deepbodied Actinopterygii from the Kinney Quarry, Manzanita Mountains, New Mexico. New Mexico Bureau of Mines & Mineral Resources Bulletin 138: 145–182.
  • Zidek, J. 1993a. Juvenile Orthacanthus platypternus (Cope 1883) (Elasmobranchii: Xenacanthiformes) from the Upper Carboniferous near Hamilton, Kansas, U.S.A. In: U.-H.J. Heidtke (ed.), New Research on Permo-Carboniferous faunas. Pollichia-Buch 29: 53–65.
  • Zidek, J. 1993b. Xenacanth genera: How many and how to tell them apart? In: U.-H.J. Heidtke (ed.), New Research on Permo-Carboniferous faunas. Pollichia-Buch 29: 23–35.
  • Zidek, J., Johnson, G.D., May, W., and Claborn, A. 2004. New specimens of xenacanth and hybodont sharks (Elasmobranchii: Xenacanthida and Hybodontoidea) from the Lower Permian of Southwestern Oklahoma. Oklahoma Geology Notes 63 (4): 136–147.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-114f1fc8-6d47-4609-afc8-a3485d5ac6bb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.