PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 67 | 2 |

Tytuł artykułu

Screening and identification of Trichoderma strains isolated from natural habitats with potential to cellulose and xylan degrading enzymes production

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
A total of 123 Trichoderma strains were isolated from different habitats and tested for their ability to degrade cellulose and xylan by simple plate screening method. Among strains, more than 34 and 45% respectively, exhibited higher cellulolytic and xylanolytic activity, compared to the reference strain T. reesei QM 9414. For strains efficiently degrading cellulose, a highest enzyme activity was confirmed using filter paper test, and it resulted in a range from 1.01 to 7.15 FPU/ml. Based on morphological and molecular analysis, the isolates were identified as Trichoderma. The most frequently identified strains belonged to Trichoderma harzianum species. Among all strains, the most effective in degradation of cellulose and xylose was T. harzianum and T. virens, especially those isolated from forest wood, forest soil or garden and mushroom compost. The results of this work confirmed that numerous strains from the Trichoderma species have high cellulose and xylan degradation potential and could be useful for lignocellulose biomass conversion e.g. for biofuel production.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

67

Numer

2

Opis fizyczny

p.181-190,fig.,ref.

Twórcy

autor
  • Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Poznan, Poland
autor
  • Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
  • Institute of Food Technology of Plant Origin, Poznan University of Life Sciences, Poznan, Poland
  • Institute of Food Technology of Plant Origin, Poznan University of Life Sciences, Poznan, Poland

Bibliografia

  • Aehle W. 2007. Enzymes in industry. Third edition, Wiley-VCH Verlag GmbH & Co. KGaA.
  • Altinok H.H. 2009. In vitro production of fumonisin B1 and B2 by Fusarium moniliforme and the biocontrol activity of Trichoderma harzianum. Ann. Microbiol. 59(3): 509–516.
  • Amore A., S. Giacobbe and V. Faraco. 2013. Regulation of cellulase and hemicellulase gene expression in fungi. Curr. Genomics. 14: 230–249.
  • Banerjee S., S. Mudliar, R. Sen, B. Giri, D. Satpute, T. Chakrabartiand R.A. Pandey. 2010. Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuels, Bioprod. Bioref. 4: 77–93.
  • Beg Q., B. Bhushan, M. Kapoor and G.S. Hoondal. 2000. Production and characterization of thermostable xylanase and pectinase from Streptomyces sp. QG-11-3. J. Ind. Microbiol. Biot. 24: 396–402.
  • Błaszczyk L., D. Popiel, J. Chełkowski, G. Koczyk, G.J. Samuels, K. Sobieralski and M. Siwulski. 2011. Species diversity of Trichoderma in Poland. J. Appl. Genet. 52: 233–243.
  • Błaszczyk L., M. Siwulski, K. Sobieralski and D. Frużyńska-Jóźwiak. 2013. Diversity of Trichoderma spp. causing Pleurotus green mould diseases in Central Europe. Folia Microbiol. 58: 325–333.
  • Błaszczyk L., J. Strakowska, J. Chełkowski, A. Gąbka-Buszek and J. Kaczmarek. 2016. Trichoderma species occurring on wood with decay symptoms in mountain forests in Central Europe: genetic and enzymatic characterization. J. Appl. Genet. 57: 397–407.
  • Carbone I. and Kohn L.M. 1999. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia. 91: 553–556.
  • Chakdar H., M. Kumar, K. Pandiyan, A. Singh, K. Nanjappan,P.L. Kashyap and A.K. Srivastava. 2016. Bacterial xylanases: biology to biotechnology. 3 Biotech. 6(2): 150.
  • Chandel K., S. Jandaik, V. Kumari, S. Sarswati, A. Sharma,D. Kumar and N. Kumar. 2013. Isolation, purification and screening of cellulolytic fungi from mushroom compost for production of enzyme (cellulase). Int. J. Curr. Res. 5(1): 222–229.
  • Chávez R., F. Fierro, R.O. García-Rico and I. Vaca. 2015. Filamentous fungi from extreme environments as a promising source of novel bioactive secondary metabolites. Front. Microbiol. 6: 903.
  • Clarke A. 1997. Biodegradation of cellulose: enzymology and biotechnology. CRC Press.
  • Crowther T.W., L. Boddy and T.H. Jones. 2012. Functional and ecological consequences of saprotrophic fungus-grazer interactions. ISME J. 6: 1992–2001.
  • Cyplik P., R. Marecik, A. Piotrowska-Cyplik, A. Olejnik, A. Drozdzyńska and Ł. Chrzanowski. 2012. Biological denitrification of high nitrate processing wastewaters from explosives production plant. Water Air Soil Poll. 223(4): 1791–1800.
  • Doohan F.M., D.W. Parry, P. Jenkinson and P. Nicholson. 1998. The use of species-specific PCR-based assays to analyse Fusarium ear blight of wheat. Plant Pathol. 47: 197–205.
  • Druzhinina I.S., A.G. Kopchinskiy, M. Komon, J. Bissett, G. Szakacs and C.P. Kubicek. 2005. An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet. Biol. 42: 813–828.
  • Druzhinina I.S., M. Komoń-Zelazowska, L. Atanasova, V. Seidl and Ch.P. Kubicek. 2010. Evolution and ecophysiology of the industrial producer Hypocrea jecorina (Anamorph Trichoderma reesei) and a new sympatric agamospecies related to it. PLOS ONE. 5(2): e9191. doi:10.1371/journal.pone.0009191.
  • Gams W. and J. Bisset. 1998. Morphology and identification of Trichoderma. In: Harman G. E. and C. P. Kubicek (eds). Trichoderma & Gliocladium. Vol. 1. Taylor and Francis, London.
  • Ghose T. K. 1987. Measurement of cellulase activities. Pure & Appl. Chem. 59: 257–268.
  • Hadkin L. and S. Anagnostakis. 1977. Solid media containing carboxyl methyl cellulose to detect CM cellulase activity of microorganisms. J. Gen. Microbiol. 98: 109–115.
  • Harreither W., Ch. Sygmund, M. Augustin, M. Narciso, M.L. Rabinovich, L. Gorton, D. Haltrich and R. Ludwig. 2011. Catalytic Properties and Classification of Cellobiose Dehydrogenases from Ascomycetes. Appl. Environ. Microbiol. 7(5): 1804–1815.
  • Harris A.D. and C. Ramalingam. 2010. Xylanases and its application in food industry: a review. J. Exp. Sciences. 1(7): 1–11.
  • Hendriks A. and G. Zeeman. 2009. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100: 10–18.
  • Inuwa Ja’afaru M. 2013. Screening of fungi isolated from environmental samples for xylanase and cellulase production. Hindawi Publishing Corporation, ISRN Microbiol. Vol. 2013. Article ID 283423.
  • Jae-Hyuk Y. and N. Keller. 2005. Regulation of secondary metabolism in filamentous fungi. Annu. Rev. Phytophatol. 43: 437–458.
  • Jaklitsch W.M., M. Komon, C.P. Kubicek and I.S. Druzhinina. 2005. Hypocrea voglmayrii sp. nov. from the Austrian Alps represents a new phylogenetic clade in Hypocrea/Trichoderma. Mycologia. 97: 1365–1378.
  • Jaklitsch W.M. 2011. European species of Hypocrea part II: species with hyaline ascospores. Fungal Divers. 48: 1–250.
  • Jeleń H., L. Błaszczyk, J. Chełkowski, K. Rogowicz and J. Strakowska. 2014. Formation of 6-n-pentyl-2H-pyran-2-one (6-PAP) and other volatiles by different Trichoderma species. Mycol. Progress. 3: 589–600.
  • Jorgensen H., J. Kutter and L. Olsson. 2003. Separation and quantification of cellulases and hemicelulases by capillary electrophoresis. Anal. Biochem. 317(1): 85–93.
  • Kopchinskiy A., M. Komon, C.P. Kubicek and I.S. Druzhinina. 2005. TrichoBLAST: a multilocus database for Trichoderma and Hypocrea identifications. Mycol. Res. 109: 657–660.
  • Kubicek C.P. 2013. Systems biological approaches towards understanding cellulase production by Trichoderma reesei. J. Biotechnol. 163: 133–142.
  • Kumar P., D. M. Barrett, M.J. Delwiche and P. Stroeve. 2009. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 48 (8): 3713–3729.
  • Liming X. and S. Xueliang. 2004. High-yield cellulase production by Trichoderma reesei ZU-02 on corn cob residue. Bioresour. Technol. 91(3): 259–262.
  • Lisiecki P., Ł. Chrzanowski, A. Szulc, Ł. Ławniczak, W. Białas, M. Dziadas, M. Owsianiak, J. Staniewski, P. Cyplik, R. Marecik and others. 2014. Biodegradation of diesel/biodiesel blends in saturated sand microcosms. Fuel. 116: 321–327.
  • Marecik R., R. Dembczyński, W. Juzwa, Ł. Chrzanowski and P. Cyplik. 2015. Removal of nitrates from processing wastewater by cryoconcentration combined with biological denitrification. Desalin. Water Treat. 54(7): 1903–1911.
  • Marecik R., J. Wojtera-Kwiczor, Ł. Ławniczak, P. Cyplik, A. Szulc, A. Piotrowska-Cyplik and Ł. Chrzanowski. 2012. Rhamnolipids increase the phytotoxicity of diesel oil towards four common plant species in a terrestrial environment. Water Air Soil Poll. 223(7): 4275–4282.
  • Miller G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–428.
  • Park Y.C. and J.S. Kim. 2012. Comparison of various alkalinepretreatment methods of lignocellulosic biomass. Energy. 47(1): 31–35.
  • Pęziak D., A. Piotrowska, R. Marecik, P. Lisiecki, M. Woźniak, A. Szulc, Ł. Ławniczak and Ł. Chrzanowski. 2013. Bioavailability of hydrocarbons to bacterial consortia during Triton X-100 mediated biodegradation in aqueous media. Acta Biochim. Pol. 60(4): 789–793.
  • Piotrowska-Cyplik A. and Z. Czarnecki. 2003. Phytoextraction of heavy metals by hemp during anaerobic sewage sludge management in the non-industrial sites. Pol. J. Environ. Stud. 12(6): 779–784.
  • Polizeli M., A. Rizzatti, R. Monti, H. Terenzi, J.A. Jorge and D. Amorim. 2005. Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67: 577–591.
  • Sanchez C. 2009. Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnol. Adv. 27: 185–194.
  • Sandgren M., J. Stáhlberg and C. Mitchinson. 2005. Structural and biochemical studies of GH family 12 cellulases: improved thermal stability, and ligand complexes, Prog. Biophys. Mol. Biol. 89: 246–291.
  • Sarkar N., S. Kumar, S. Bannerjee and K. Aikat. 2012. Bioethanol production from agricultural wastes: An overview. Renew. Energ. 37: 19–27.
  • Saxena R., D. Adhikari and H. Goyal. 2009. Biomass-based energy fuel through biochemical routes: A review. Renew. Sust. Energ. Rev. 13: 168–178.
  • Sazci A., A. Radford and K. Erenler. 1986. Detection of cellulolytic fungi by using Congo-red as an indicator: a comparative study with the dinitrosalicilic acid reagent method. J. Appl. Bacteriol. 61: 559–562.
  • Sun Y. and J. Cheng. 2002. Hydrolysis of lignocellulosic material for ethanol production: a review. Bioresour. Technol. 96: 673–686.
  • Taherzadeh M. and K. Karimi. 2008. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int. J. Mol. Sci. 9: 1621–1651.
  • Than T.-C., D. Kracher, R. Gandini, Ch. Sygmund, R. Kittl, D. Haltrich, B. M. Hällberg, R. Ludwig and Ch. Divne. 2015. Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation. Nat. Commun. 6: 7542. doi: 10.1038/ncomms8542.
  • Qin W.T. and W.Y. Zhuang. 2016. Seven wood-inhabiting new species of the genus Trichoderma (Fungi, Ascomycota) in Viride clade. Sci. Rep. 6, 27074. doi: 10.1038/srep27074.
  • Vinale F., R. Marra, F. Scala, E. Ghisalberti, M. Lorito and K. Sivasithamparam. 2006. Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett. Appl. Microbiol. 43: 143–148.
  • Vinale F., K. Sivasithamparam, E.L. Ghisalberti, R. Marra, S.L. Woo and M. Lorito. 2008. Trichoderma- plant-pathogen interactions. Soil Biol. Biochem. 40: 1–10.
  • Wen Z., W. Liao and S. Chen. 2005. Production of cellulase by Trichoderma reesei from dairy manure. Bioresour. Technol. 96(4): 491–499.
  • White T.J., T. Bruns, S. Lee and J.W. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, pp. 315–322. In: Innis M.A., D.H. Gelfand, J.J. Shinsky, T.J. White (eds). PCR protocols: a guide to methods and applications. Academic, San Diego.
  • Wilson D.B. 2009. Cellulases and biofuels. Curr. Opin. Biotechnol. 20: 295–299.
  • Wojtkowiak-Gębarowska E. 2006. Mechanizmy zwalczania fitopatogenów glebowych przez grzyby z rodzaju Trichodrema. Post. Mikrobiol. 45(4): 261–273.
  • Xu J., N. Takakuwa, M. Nogawa, H. Okada and Y. Morikawa. 1998. A third xylanase from Trichoderma reesei PC-3-7. Appl. Microbiol. Biotechnol. 49: 718–724.
  • Ziemniński K., I. Romanowska and M. Kowalska. 2012. Enyzmatic pretreatment of lignocellulosic wastes to improve biogas production. Waste Manag. 32: 1131–1137.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-114cd3ed-aac4-400d-9969-58d7936ce2ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.