PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 65 | 1 |

Tytuł artykułu

Bacterial diversity and composition in Oylat Cave (Turkey) with combined Sanger/pyrosequencing approach

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The microbiology of caves is an important topic for better understanding subsurface biosphere diversity. The diversity and taxonomic composition of bacterial communities associated with cave walls of the Oylat Cave was studied first time by molecular cloning basedon Sanger/pyrosequencing approach. Results showed an average of 1,822 operational taxonomic units per sample. Clones analyzed from Oylat Cave were found to belong to 10 common phyla within the domain Bacteria. Proteobacteria dominated the phyla, followed by Actinobacteria, Acidobacteria and Nitrospirae. Shannon diversity index was between to 3.76 and 5.35. The robust analysis conducted for this study demonstrated high bacterial diversity on cave rock wall surfaces.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

65

Numer

1

Opis fizyczny

p.69-75,fig.,ref.

Twórcy

  • Institute of Science and Engineering, University of Istanbul, Istanbul, Turkey

Bibliografia

  • Atabey E., L. Nazik and K. Tork. 2002. Oylat Magarasi Cokel Kayalarinin Sedimentalojisi. MTA Dergisi. 123–124: 91–98.
  • Baker G.C., J.J. Smith and D.A. Cowan. 2003. Review and re-analysis of domain-specific 16S primers. J. Microbiol. Methods. 55: 541–555.
  • Barton H.A., N.M. Taylor, M.P. Kreate, A.C. Springer, S.A. Oehrle and J.L. Bertog. 2007. The impact of host rock geochemistry on bacterial community structure in oligotrophic cave environments. Int. J. Speleol. 36: 5.
  • Barton H.A., N.M. Taylor and B.R. Lubbers. 2006. DNA extraction from low-biomass carbonaterock: an improved method with reduced contamination and the lowbiomass contaminant database. J. Microbiol. Methods. 66: 21–31.
  • Borsodi A.K., Knab M., Kreet M., Makk J., Marialigeti K., Eross A., Madl-Szonyi J. 2012, Biofilm bacterial communities inhabiting the cave walls of the Buda Thermal Karst System, Hungary, Geomic. Journal, 29: 611–627.
  • Chelius M.K. and J.C. Moore. 2004. Molecular phylogenetic analysis of Archaea and Bacteria in Wind Cave, South Dakota. Geomicrobiol. J. 21: 123–134.
  • Cole J.R., B. Chai, R.J. Farris, Q. Wang, S.A. Kulam, D.M. McGarrell, G.M. Garrity and J.M. Tiedje. 2005. The Ribosomal Database Project (RDP-II): sequences and tools for high throughput rRNA analysis. Nucleic Acids Res. 33: D294–D296.
  • DeSantis T.Z. and P. Hugenholtz. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72(7): 5069–5072.
  • Edgar R.C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19): 2460–2461.
  • Holmes A.J., N.A. Tujula, M. Holley, A. Contos, J.M. James, P. Rogers, M.R. Gillings. 2001. Phyogenetic structure of unusual aquatic microbial formations in Nullarbor Cave, Australia. Environ. Microbiol. 3: 256–264.
  • Huber T., G. Faulkner and P. Hugenholtz. 2004. Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20: 2317–2319.
  • Ivanova V., I. Tomova, A. Kamburov, A. Tomova, E. Vasileva-Tonkova and M. Kambourova. 2013. High phylogenetic diversity of bacteria in the area of prehistoric paintings in Magura Cave, Bulgaria. J. Cave and Karst. Studies 75(3): 218–228.
  • Groth I., R. Vettermann, B. Schuetze, P. Schumann and C. Sáiz-Jiménez. 1999. Actinomycetes in karstic caves of northern Spain (Altamira and Tito Bustillo). J. Microbiol. Methods. 36: 115–122.
  • Ketin I. 1966. Tectonic units of Anatolia (Asia Minor). Bull MTA. 66: 23–34.
  • Legatzki A, M. Ortiz, J.W. Neilson, R.R. Casavant, M.W. Palmer, C. Rasmussen, B.M. Pryor, L.S. Pierson and R.M. Maier. 2012. Factors influencing observed variations in the structure of bacterial communities on calcite formations in Kartchner Caverns, AZ, USA Geomicrobiol J. 29: 422–434.
  • Macalady J.L., E.H. Lyon, B. Koffman, L.K. Albertson, K. Meyer, S. Galdenzi and S. Mariani. 2006. Dominant microbial populations in limestone-corroding stream biofilms, Frasassi Cave system, Italy. Appl. Environ. Microbiol. 72: 5596–5609.
  • Nakayama J., J. Jiang, K. Watanabe, K. Chen, H. Ninxin, K. Matsuda, T. Kurakawa, H. Tsuji, K. Sonomoto and Y. Lee. 2013. Up to species-level community analysis of human gut microbiota by 16S RrNA amplicon pyrosequencing. Biosci Microbiota Food Health. 32(2): 69–76.
  • Ortiz M., J.W. Neilson, W.M. Nelson, A. Legatzki, A. Byrne, Y. Yu, R.A. Wing, C.A. Soderlund, M.B. Pryor, L.S. Pierson and R.M. Maier. 2012. Profiling bacterial diversity and taxonomic composition on speleothem surfaces in Kartchner Caverns, AZ. Microb. Ecol. 65: 371–383.
  • Ortiz M., A. Legatzki, J.W. Neilson, B. Fryslie, W.M. Nelson, R.A. Wing, C.A. Soderlund, M.B. Pryor and R.M. Maier. 2014. Making a living while starving in the dark: metagenomic insights into the energy dynamics of a carbonate cave. The ISME Journal. 8: 478–491.
  • Pasic L., B. Kovce, B. Sket and B. Herzog-Velikonnja. 2010. Diversity of microbial communities colonizing the walls of a karstic cave in Slovenia. FEMS Microbiol. Ecol. 71: 50–60.
  • Portillo M.C., C. Saiz-Jimeney and J.M. Gonzalez. 2009. Molecular characterization of total and metabolically active bacterial communities of “white colonizations” in the Altamira Cave, Spain. Res. Microbiol. 160: 41–47.
  • Schabereiter-Gurtner C., C. Saiz-Jimenez, G. Pinar, W. Lubitz and S. Rolleke. 2002. Phylogenetic 16S rRNA analysis reveals the presence of complex and partly unknown bacterial communities in Tito Bustillo Cave, Spain, and on its Paleolithic paintings. Environ. Microbiol. 4: 392–400.
  • Schabereiter-Gurtner C., C. Saiz-Jimenez, G. Pinar, W. Lubitz and S. Rolleke. 2004. Phylogenetic diversity of bacteria associated with Paleolithic paintings and surrounding rock walls in two Spanish caves (Llon|.n and La Garma). FEMS Microbiol. Eco. 47(2): 235–247.
  • Wang Q., G.M. Garrity, J.M. Tiedje and J.R. Cole. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73: 5261–5267.
  • Weisburg W.G., S.M. Barns, D.A. Pelletier and D.J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697–703
  • Wright E.S., L.S. Yilmaz and D.R. Noguera. 2012. DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Appl. Environ. Microbiol. 78: 717–725.
  • Wu Y., Tan L., Liu W., Wang B., Wang J., Cai Y., et al. 2015. Profiling bacterial diversity in a limestone cave of the western Loess Plateau of China. Front. Microbiol. 6: 244. 10.3389/fmicb.2015.00244
  • Zhou J.P., Y.Q. Gu, C.S. Zou and M.H. Mo. 2007. Phylogenetic diversity of bacteria in an earth-cave in Guizhou Province, Southwest of China. J. Microbiol. 45: 105–112.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-10d1eef9-1c2d-42a6-b93c-6024e67a64ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.