Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 1 |
Tytuł artykułu

Enhanced immobilization of polycyclic aromatic hydrocarbons in contaminated soil using forest wood-derived biochar and activated carbon under saturated conditions, and the importance of biochar particle size

Treść / Zawartość
Warianty tytułu
Języki publikacji
Leaching behavior of organic contaminants such as polycyclic aromatic hydrocarbons (PAHs) can be altered in the presence of organic amendments through enhanced sorption of PAHs to the amended soil. The aim of the present study was to investigate the influence of biochar in two forms (i.e., crushed and pulverized), and granular activated carbon on immobilization and leaching behavior of selected PAHs from contaminated soil into water using the column leaching test. The influence of biochar particle size on leaching behavior of PAHs in biochar-amended soil was also evaluated for the first time in this study. Results showed relatively high initial concentrations of naphthalene, fluorene, and pyrene for unamended column (B1). Strong sorption of all PAHs to soil was observed in this study. At the end of the experiment less than one percent of the solid phase content of the sum of PAHs was released into water in columns B3 and B4. Change in pH due to the application of organic amendments did not affect PAH leaching results. The addition of pulverized biochar and granular activated carbon to soil remarkably reduced mobilization and leaching of the studied PAHs in most cases; however, higher molecular weight PAHs (i.e., pyrene, benzo(b)fluoranthene, and indeno(1,2,3- cd)) were mobilized in the presence of crushed biochar in soil. The controlling role of biochar particle size on mobilization and release of PAHs in soil was observed. The application of pulverized biochar and activated carbon increased colloid content of the column effluents while reducing their dissolved organic carbon (DOC) content, suggesting a more significant role of colloid-facilitated transport than DOC-associated transport of PAHs in their leaching from carbon-amended soils, particularly for higher molecular weight PAHs. Based on the obtained results, pulverized biochar and granular activated carbon demonstrated promising and comparable performance in immobilizing PAHs in soil and reducing their leaching from soil into water through enhanced sorption of PAH compounds, which is markedly favorable in terms of soil remediation.
Słowa kluczowe
Opis fizyczny
  • Faculty of Environment, University of Tehran, 23, Ghods St., 141556135 Tehran, Iran
  • Center for Applied Geosciences (ZAG), University of Tubingen, Holderlinstr. 12, 72076 Tubingen, Germany
  • 1. ENELL A., REICHENBERG F., WARFVINGE P., EWALD G. A column method for determination of leaching of polycyclic aromatic hydrocarbons from aged contaminated soil. Chemosphere 54, 707, 2004.
  • 2. GILBERT D., JAKOBSEN H.H., WINDING A., MAYER, P. Co-transport of polycyclic aromatic hydrocarbons by motile microorganisms leads to enhanced mass transfer under diffusive conditions. Environ. Sci. Technol. 48, 4368, 2014.
  • 3. SUN M., LUO Y., CHRISTIE P., JIA Z., LI Z., TENG Y. Methyl-beta-cyclodextrin enhanced biodegradation of polycyclic aromatic hydrocarbons and associated microbial activity in contaminated soil. J. Environ. Sci. 24 (5), 926, 2012.
  • 4. WICK A.F., HAUS N.W., SUKKARIYAH B.F., HAERING K.C., DANIELS W.L. Remediation of PAH-contaminated soils and sediments: a literature review. Virginia Polytecnic Institute; 6, USA, 2011.
  • 5. ENELL A., FUHRMAN F., LUNDIN L., WARFVINGE P., THELIN G. Polycyclic aromatic hydrocarbons in ash: determination of total and leachable concentrations. Environ. Pollut. 152, 285, 2008.
  • 6. BANSAL V., KIM K.H. Review of PAH contamination in food products and their health hazards. Environ. Int. 84, 26, 2015.
  • 7. KIM K.H., JAHAN S.A., KABIR E., BROWN R.J. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int. 60, 71, 2013.
  • 8. GUANSEKARA A.S., XING B. Sorption and desorption of naphthalene by soil organic matter: importance of aromatic and aliphatic components. J. Environ. Qual. 32, 240, 2003.
  • 9. MAIER U., GRATHWOHL P. Numerical experiments and field results on the size of steady state plumes. J Contam. Hydrol. 85, 33, 2001.
  • 10. LIU R., ZHAO D. Reducing leachability and bioaccessibility of lead in soils using a new class of stabilized iron phosphate nanoparticles. Water Res. 41, 2491, 2007.
  • 11. SI Y., ZHANG J., WANG S., ZHANG L., ZHOU D. Influence of organic amendment on the adsorption and leaching of ethametsulfuron-methyl in acidic soils in China. Geoderma 130, 66, 2006.
  • 12. RAZZAQUE M.M., GRATHWOHL P. Predicting organic carbon-water partitioning of hydrophobic organic chemicals in soils and sediments based on water solubility. Water Res. 42(14), 3775, 2008.
  • 13. CHEN B., YUAN M. Enhanced sorption of polycyclic aromatic hydrocarbons by soil amended with biochar. J Soil Sediment, 11, 62, 2004.
  • 14. WEN B., LI R.J., ZHANG S.Z., SHAN X.Q., FANG J., XIAO K., KHAN S.U. Immobilization of pentachlorophenol in soil using carbonaceous material amendments. Environ. Pollut. 157, 968, 2009.
  • 15. LOHMANN R. The Emergence of Black Carbon as a Super-Sorbent in Environmental Chemistry: The End of Octanol? Environ. Forensics 4 (3), 161, 2003.
  • 16. REID B.J., PICKERING F.L., FREDDO A., WHELAN M.J., COULON F. Influence of biochar on isoproturon partitioning and bioaccessibility in soil. Environ. Pollut. 181, 44, 2013.
  • 17. LEHMANN J., RILLIG M.C., THIES J., MASIELLO C.A., HOCKADAY W.C., CROWLEY D. Biochar effects on soil biota-A review. Soil Biol. Biochem. 43, 1812, 2011.
  • 18. SOHI S., KRULL E., LOPEZ-CAPEL E., BOL R. A review of biochar and its use and function in soil. Adv. Agron. 105, 47, 2010.
  • 19. AMSTAETTER K., EEK E., CORNELISSEN G. Sorption of PAHs and PCBs to activated carbon: Coal versus biomass-based quality. Chemosphere 87, 573, 2012.
  • 20. BEESLEY L., MORENO-JIMÉNEZ E., GOMEZ-EYLES J.L., HARRIS E., ROBINSON B., SIZMUR T. A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils. Environ. Pollut. 159, 3269, 2011.
  • 21. AYOTAMUNO M.J., KOGBARA R.B., OGAJI S.O.T., PROBERT S.D. Petroleum contaminated groundwater: remediation using activated carbon. Appl. Energ. 83 (11), 1258, 2006.
  • 22. DENYES M.J., RUTTER A., ZEEB B.A. In situ application of activated carbon and biochar to PCB-contaminated soil and the effects of mixing regime. Environ. Pollut. 182, 201, 2013.
  • 23. GOMEZ-EYLES J.L., SIZMUR T., COLLINS C.D., HODSON, M.E. Effects of biochar and the earthworm Eisenia fetida on the bioavailability of polycyclic aromatic hydrocarbons and potentially toxic elements. Environ. Pollut. 159 (2), 616, 2011.
  • 24. BEESLEY L., MORENO-JIMENEZ E., GOMEZ-EYLES J.L. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ. Pollut. 158 (6), 2282, 2010.
  • 25. GRATHWOHL P., VAN DER SLOOT H. Groundwater Risk Assessment at Contaminated Sites (GRACOS): Test Methods and Modeling Approaches. RSC Publishing, Cambridge. 2007.
  • 26. GRATHWOHL P., SUSSET B. Comparison of percolation to batch and sequential leaching tests: Theory and data. Waste Manage. 29, 2681, 2009.
  • 27. DIN 19528, Elution von Feststoffen - Perkolationsverfahren zur gemeinsamen Untersuchung des Elutionsverhaltens von anorganischen und organischen Stoffen (Leaching of solid materials - Percolation method for the joint examination of the leaching behaviour of organic and inorganic substances), German Standard Methods, Germany, 2009.
  • 28. KALBE U., BERGER W., ECKARDT J., SIMON F.G. Evaluation of leaching and extraction procedures for soil and waste. Waste Manage. 28, 1027, 2008.
  • 29. ZANIST K. Comparison of Leaching Tests for PAHs Contaminated Soils. MSc Thesis, Center for Applied Geosciences, University of Tubingen; 2-19, Germany, 2008.
  • 30. CEN. CEN/TS 14405. Characterization of Waste-Leaching Behaviour Tests-Up-flow Percolation Test (under specified conditions), European Committee for Standardisation; pp.140, Belgium, 2004
  • 31. BOJES H.K., POPE P.G. Characterization of EPA's 16 priority polycyclic aromatic hydrocarbons (PAHs) in tank bottom solids and associated contaminated soils at oil exploration and production sites in Texas. Regul. Toxicol. Pharm. 47, 288, 2007.
  • 32. UNWIN J., COCKER J., SCOBBIE E., CHAMBERS H. An Assessment of Occupational Exposure to Polycyclic Aromatic Hydrocarbons in the UK. Ann. Occup. Hyg. 50 (4), 395, 2006.
  • 33. GARON D., SAGE L., WOUESSIDJEWE D., SEIGLE-MURANDI F. Enhanced degredation of fluorene in soil slurry by Absidia cylindrospora and maltosyl-cyclodextrin. Chemosphere 56, 159, 2004.
  • 34. NGUELEU S.K., GRATHWOHL P., CIRPKA O.A. Effect of natural particles on the transport of lindane in saturated porous media: Laboratory experiments and model-based analysis. J Contam. Hydrol. 149, 13, 2013.
  • 35. MARCHAL J., SMITH K.E.C., REIN A., WINDING A., JONGE L.W., TRAPP S., KARLSON U.G. Impact of activated carbon, biochar and compost on the desorption and mineralization of phenanthrene in soil. Environ. Pollut. 181, 200, 2013.
  • 36. BUSHNAF K.M., PURICELLI S., SAPONARO S., WERNER D. Effect of biochar on the fate of volatile petroleum hydrocarbons in an aerobic sandy soil. J Contam. Hydrol. 126, 208, 2011.
  • 37. ZHANG H., LIN K., WANG H., GAN J. Effect of Pinus radiata derived biochars on soil sorption and desorption of phenanthrene. Environ. Pollut. 158, 2821, 2010.
  • 38. OLU-OWOLABI B.L., DIAGBOYA P.N., ADEBOWALE K.O. Evaluation of pyrene sorptionedesorption on tropical soils. J. Environ. Manage. 137, 1, 2014.
  • 39. DARYABEIGI ZAND A., GRATHWOHL P., NABI BIDHENDI G.R., MEHRDADI N. Determination of leaching behavior of polycyclic aromatic hydrocarbons from contaminated soil by column leaching test. Waste Manage. Res. 28, 913, 2010.
  • 40. SUSSET B., GRATHWOHL P. Column leaching test for groundwater risk assessment: concept, interpretation of results and reproducibility; European lysimeter station reports, 2008. Available at: EuLP/reports/ germany/Susset_lab.pdf.
  • 41. MACKAY A.A., GSCHWEND P.M. Enhanced concentrations of PAHs in groundwater at a coal tar site. Environ. Sci. Technol. 35 (7), 1320, 2001.
  • 42. MARDBERG A.C. Adsorption of polycyclic aromatic hydrocarbons (PAH) on Sphagnum moss peat. MSc Thesis, Chalmers University of Technology; 12, Sweden, 2006.
  • 43. CORNELISSEN G., GUSTAFSSON Ö., BUCHELI T D., JONKER M.T.O., KOELMANS A.A., NOORT P.C.M. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environ. Sci. Technol. 39, 6881, 2005.
  • 44. CHEN B.L., ZHOU D.D., ZHU L.Z. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ. Sci. Technol. 42 (14), 5137, 2008.
  • 45. ANDERSON N., JONES J.G., PAGE-DUMROESE D., MCCOLLUM D., BAKER S., LOEFFLER D., CHUNG W. A comparison of producer gas, biochar, and activated carbon from two distributed scale thermochemical conversion systems used to process forest biomass. Energies 6, 164, 2013.
  • 46. PARK J., HUNG I., GAN Z., ROJAS O.J., LIM K.H., PARK S. Activated carbon from biochar: Influence of its physicochemical properties on the sorption characteristics of phenanthrene. Bioresour. Technol. 149, 383, 2013.
  • 47. ZIMMERMAN J.R., WERNER D., GHOSH U., MILLWARD R.N., BRIDGES T.S., LUTHY R.G. Effects of dose and particle size and particle size on activated carbon treatment to sequester polychlorinated biphenyls and polycyclic aromatic hydrocarbons in marine sediments. Environ. Toxicol. Chem. 24, 1594, 2005.
  • 48. BRANDLI R.C., HARTNIK T., HENRIKSEN T., CORNELISSEN G. Sorption of native polyaromatic hydrocarbons (PAH) to black carbon and amended activated carbon in soil. Chemosphere 73, 1805, 2008.
  • 49. JARADAT A., FOWLER K., GRIMBERG S., HOLSEN T. Transport of Colloids and Associated Hydrophobic Organic Chemicals through a Natural Media Filter. J. Environ. Eng. 135(1), 36, 2009.
  • 50. JOSKO I., OLESZCZUK P., PRANAGAL J., LEHMANN J., XING B., CORNELISSEN J. Effect of biochars, activated carbon and multiwalled carbon nanotubes on phytotoxicity of sediment contaminated by inorganic and organic pollutants. Ecol. Eng. 60, 50, 2013.
  • 51. CELIS R., REAL M., HERMOSIN M.C., CORNEJO J. Desorption, persistence, and leaching of dibenzofuran in European soils. Soil Sci. Soc. Am. J. 70, 1310, 2006.
  • 52. PERSSON Y., HEMSTROM K., OBERG. L., TYSKLIND M., ENELL A. Use of a column leaching test to study the mobility of chlorinated HOCs from a contaminated soil and the distribution of compounds between soluble and colloid phases. Chemosphere 71, 1035, 2008.
  • 53. KIM Y.J., LEE D.H., OSAKO M. Effect of dissolved humic matters on the leachability of PCDD/Fs from fly ash - laboratory experiment using Aldrich humic acid. Chemosphere, 47, 599, 2002.
  • 54. RÜNGER H., SCHWIENTEK M., BECKINGHAM B., KUCH B., GRATHWOHL P. Turbidity as a proxy for total suspended solids (TSS) and particle facilitated pollutant transport in catchments. Environ. Earth Sci. 69 (2), 373, 2013.
  • 55. GROLIMUND D., BORKOVEC M. Colloid-Facilitated Transport of Strongly Sorbing Contaminants in Natural Porous Media: Mathematical Modeling and Laboratory Column Experiments. Environ. Sci. Technol. 39 (17), 6378, 2005.
  • 56. CHENG T., SAIERS J.E. Colloid-Facilitated Transport of Cesium in Vadose-Zone Sediments: The Importance of Flow Transients. Environ. Sci. Technol. 44 (19), 7443, 2010.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.