Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 19 | 1 |

Tytuł artykułu

Within-site variability of field recordings from stationary, passively working detectors

Warianty tytułu

Języki publikacji



Passively working devices (with no operator input) that register bat calls in real time are very important in conservation and environmental risk assessment, but data on their performance and limits under field conditions are mostly missing. We characterized the recording variability among three batcorders placed in proximate vicinity (ca. 10 m apart) to each other at 157 sites in Austria (central Europe). We found this variability perplexingly high, both for bat activity and species richness estimates. Specifically, the ratio of the highest to the lowest total sequence length (all species combined) was over fivefold in 23%, and over tenfold in 8% of the sites. In only 17% of the sites, we found the same number of species for all three devices — in most sites it varied between one and five species. The maximum call ranges of the recorded bat species affected the recording variability between the devices only for short ranges (5 m) but showed similar or relatively low variability for longer ranges. There was significantly less recording variability in sites with no woody vegetation present than in sites with open to dense vegetation structure. The results clearly indicate that the common practice of deploying only one device per site and night very likely leads to several of the resident bat species being missed and produces unreliable activity estimates.

Słowa kluczowe








Opis fizyczny



  • Department of Integrative Biology and Biodiversity Research, Institute of Zoology, University of Natural Resources and Life Sciences, Gregor-Mendel-Strasse 33, A-1180 Wien, Austria
  • Department of Integrative Biology and Biodiversity Research, Institute of Zoology, University of Natural Resources and Life Sciences, Gregor-Mendel-Strasse 33, A-1180 Wien, Austria


  • 1. Adams, A. M., M. K. Jantzen, R. M. Hamilton, and M. B. Fenton. 2012. Do you hear what I hear? Implications of detector selection for acoustic monitoring of bats. Methods in Ecology and Evolution, 3: 992–998. Google Scholar
  • 2. Amorim, F., H. Rebelo, and L. Rodrigues. 2012. Factors influencing bat activity at a wind farm in the Mediterranean region. Acta Chiropterologica, 14: 439–457. Google Scholar
  • 3. Barataud, M. 2016. Études d'habitats. P. 270, in Écologie acoustique des Chiroptéres d'Europe ( M. Barataud, ed.). Collection Inventaires & biodiversité, Biotope Éditions, Mèze — Muséum Mational d'Historie Naturelle, Paris, France, 344 pp. [In French]. Google Scholar
  • 4. Bondarenco, A., G. Körtner, and F. Geiser. 2013. Some like it cold: summer torpor by freetail bats in the Australian arid zone. Journal of Comparative Physiology, 183B: 1113–1122. Google Scholar
  • 5. Britzke, E. R., B. A. Slack, M. P. Armstrong, and S. C. Loeb. 2010. Effects of orientation and weatherproofing on the detection of bat echolocation calls. Journal of Fish and Wild-life Management, 1: 136–141. Google Scholar
  • 6. Bruckner, A. 2016. Recording at water bodies increases the efficiency of a survey of temperate bats with stationary, automated detectors. Mammalia, 80: 645–653. Google Scholar
  • 7. Colwell, R. K., A. Chao, N. J. Gotelli, S. Y. Lin, C. X. Mao, R. L. Chazdon, and J. T. Longino. 2012. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. Journal of Plant Ecology, 5: 3–21. Google Scholar
  • 8. Darras, K., P. Pütz, Fahrurrozi , K. Rembold, and T. Tscharntke. 2016. Measuring sound detection spaces for acoustic animal sampling and monitoring. Biological Conservation, 201: 29–37. Google Scholar
  • 9. Dietz, C., and A. Kiefer. 2014. Die Fledermäuse Europas — Kennen, Bestimmen, Schützen. Franckh-Kosmos, Stuttgart, Germany, 394 pp. Google Scholar
  • 10. Dietz, C., O. Von Helversen, and D. Nill. 2007. Handbuch der Fledermäuse Europas und Nordwestafrikas. Franckh-Kos mos, Stuttgart, Germany, 399 pp. Google Scholar
  • 11. Duchamp, J. E., M. Yates, R. M. Muzika, and R. K. Swihart. 2006. Estimating probabilities of detection for bat echolocation calls: an application of the double-observer method. Wildlife Society Bulletin, 34: 408–412. Google Scholar
  • 12. ECOOBS GMBH. 2010. Batcorder 2.0 Manual. Available at Accessed 03 December 2013. Google Scholar
  • 13. Fischer, J., J. Stott, B. S. Law, M. D. Adams, and R. I. Forrester. 2009. Designing effective habitat studies: Quantifying multiple sources of variability in bat activity. Acta Chiropterologica, 11: 127–137. Google Scholar
  • 14. Forrest, T. G. 1994. From sender to receiver: propagation and environmental effects on acoustic signals. American Society of Zoologists, 34: 644–654. Google Scholar
  • 15. Fox, J., and S. Weisberg. 2011. An {R} Companion to applied regression, 2nd edition. Sage, Thousands Oaks, CA. Available at Google Scholar
  • 16. Froidevaux, J. S. P., F. Zellweger, K. Bollmann, and M. K. Obrist. 2014. Optimizing passive acoustic sampling of bats in forests. Ecology and Evolution, 4: 4690–4700. Google Scholar
  • 17. Gorresen, P. M., A. C. Miles, C. M. Todd, F. J. Bonaccorso, and T. J. Weller. 2008. Assessing bat detectability and occupancy with multiple automated echolocation detectors. Journal of Mammalogy, 89: 11–17. Google Scholar
  • 18. Griffin, D. R. 1971. The importance of atmospheric attenuation for the echolocation of bats. Animal Behaviour, 19: 55–61. Google Scholar
  • 19. Grindal, S. D., J. L Morissette, and R. M. Brigham. 1999. Concentration of bat activity in riparian habitats over an elevational gradient. Canadian Journal of Zoology, 77: 972–977. Google Scholar
  • 20. Hammer, M., A. Zahn, and U. Marckmann. 2009. Kriterien fur die Wertung von Artnachweisen basierend auf Lautaufnahmen. Available at Accessed 03 December 2013. Google Scholar
  • 21. Hayes, J. P. 1997. Temporal variation in activity of bats and the design of echolocation-monitoring studies. Journal of Mammalogy, 78: 514–524. Google Scholar
  • 22. Jones, G. 2005. Echolocation. Current Biology, 15: 484–488. Google Scholar
  • 23. Jones, G., and J. M. V. Rayner. 1989. Foraging behavior and echo location of wild horseshoe bats Rhinolophus ferrumequinum and R. hipposideros (Chiroptera, Rhinolophidae). Behavioral Ecology and Sociobiology, 25: 183–191. Google Scholar
  • 24. Larson, D. J., and P. Hayes. 2000. Variability in sensitivity of Anabat II detectors and a method of calibration. Acta Chiropterologica, 2: 209–213. Google Scholar
  • 25. Mair, P., F. Schoenbrodt, and R. Wilcox. 2016. WRS2: Wilcox robust estimation and testing. Available at Google Scholar
  • 26. Marckmann, U., and V. Runkel. 2010. bcAdmin 2.0 - Benutzer handbuch. Available at Accessed 03 December 2013. Google Scholar
  • 27. Mickevičiene, I., and E. Mickevičius. 2001. The importance of various habitat types to bats (Chiroptera: Vespertilionidae) in Lithuania during the summer period. Acta Zoologica Lituanica, 11: 3–14. Google Scholar
  • 28. Murray, K. L., E. R. Britzke, B. M. Hadley, and L. W. Robbins. 1999. Surveying bat communities: a comparison between mist nets and Anabat II bat detector system. Acta Chiropterologica, 1: 105–112. Google Scholar
  • 29. O'Farrell, M. J. 1997. Use of echolocation calls for the identification of free-flying bats. Transections of the Western Section of the Wildlife Society, 33: 1–8. Google Scholar
  • 30. O'Farrell, M. J., and W. L. Gannon. 1999. A comparison of acoustic versus capture techniques for the inventory of bats. Journal of Mammalogy, 80: 24–30. Google Scholar
  • 31. Pettersson, L. 2004. The properties of sound and bat detectors. Pp. 9–12, in Bat echolocation research: tools, techniques and analysis ( R. M. Brigham, E. K. V. Kalko, G. Jones, S. Parsons, and H. J. G. A. Limpens, eds.). Bat Conser vation International, Austin, Texas, vii + 167 pp. Google Scholar
  • 32. R CORE TEAM. 2015. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at Accessed 22 June 2012. Google Scholar
  • 33. Runkel, V. 2010. batIdent — Version 1.03. Available at Accessed 03 December 2013. Google Scholar
  • 34. Runkel, V., and U. Marckmann. 2010. bcAnalyze — Version 2.0. Available at Accessed 03 December 2013. Google Scholar
  • 35. Scanlon, A. T., and S. Petit. 2008. Effects of site, time, weather and light on urban bat activity and richness: considerations for survey effort. Wildlife Research, 35: 821–834. Google Scholar
  • 36. Schnitzler, H.-U., and E. K. V. Kalko. 2001. Echolocation by insect-eating bats. BioScience, 51: 557–569. Google Scholar
  • 37. Schuster, C., and V. Runkel. 2014. batcorder 3.1 Bedienungs-anleitung. Available at Accessed 20 August 2015. Google Scholar
  • 38. Skalak, S. L., R. E. Sherwin, and R. M. Bringham. 2012. Sampling period, size and duration influence measures of bat species richness from acoustic surveys. Methods in Ecology and Evolution, 3: 490–502. Google Scholar
  • 39. Skiba, R. 2009. Europaische Fledermause — Kennzeichen, Echoortung und Detektoranwendung. Neue Brehm-Bucherei, Band 648. Westarp Wissenschaften, Hohen warsleben, Germany, 220 pp. Google Scholar
  • 40. Waters, D. A., and G. Jones. 1995. Echolocation call structure and intensity in five species of insectivorous bats. Journal of Experimental Biology, 198: 475–489. Google Scholar

Typ dokumentu


Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.