PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 3 |

Tytuł artykułu

Using the combined Fenton-MBR process to treat cutting fluid wastewater

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Cutting fluid wastewater is a highly concentrated organic effluent generated in the production of silicon water. Because the wastewater that contains synthetic organic compounds is characterized by high COD content, complex components, and poor biodegradability, it is absolutely formidable to be fully treated using one method. Therefore, the combined Fenton-MBR process was developed and explored in this trial, in which some organic compounds such as polyethylene glycol and surfactants can be broken to little pieces by Fenton oxidation and subsequently treated by the MBR process. The operating parameters were tested and optimized respectively, and the process mechanism was revealed as well. Under optimal operating conditions of Fenton oxidation (COD concentration of 2,500 mg/L, reaction temperature of 30ºC, pH of 3.0, Fe²⁺ dosage of 20 mmol/L, H₂O₂ dosage of 250 mmol/L, and treatment time of 3 h) and MBR system (HRT of 8 h, DO of 1 mg/L), COD removal efficiency could reach 97%, and the effluent COD was ultimately reduced to 100 mg/L. The results demonstrated that the combined Fenton-MBR process can solve the defects of MBR, which is arduous to degrade synthetic organic compounds, improving the biodegradability of wastewater and the efficiency of contaminant removal.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

3

Opis fizyczny

p.1375-1383,fig.,ref.

Twórcy

autor
  • Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang’an University, Xi’an 710054, P.R. China
autor
  • Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang’an University, Xi’an 710054, P.R. China
autor
  • Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang’an University, Xi’an 710054, P.R. China
autor
  • Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang’an University, Xi’an 710054, P.R. China
autor
  • Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang’an University, Xi’an 710054, P.R. China
autor
  • Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang’an University, Xi’an 710054, P.R. China
  • Shanxi Key Laboratory of Exploration and Comprehensive Utilization of Mineral resources, Xi’an 710054, P.R. China
autor
  • Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang’an University, Xi’an 710054, P.R. China
  • hanxi Key Laboratory of Exploration and Comprehensive Utilization of Mineral resources, Xi’an 710054, P.R. China

Bibliografia

  • 1. BRAGA A.F.B., MOREIRA S.P., ZAMPIERI P.R., BACCHIN J.M.G., MEI P.R. New processes for the production of solar-grade poly crystal line silicon: A review. Solar Energy Materials and Solar Cells, 92 (4), 418, 2008.
  • 2. GOETZBERGER A., HEBLING C. Photovoltaic materials, past, present, future. Solar Energy Materials and Solar Cells, 62 (1-2), 1, 2000.
  • 3. SARYI, D., EINHAUS, R. Silicon feedstock for the multicrystalline photovoltaic industry.Solar Energy Materials and Solar Cells, 72, 27, 2002.
  • 4. ZHAN W., WANG X., Li D., REN Y., LIU D., KANG J. Catalytic wet air oxidation of high concentration pharmaceutical wastewater. Water science and technology, 67 (10), 2281, 2013.
  • 5. MA J.Y., MA Z,Y. Investigation on incineration of salty organic wastewater. International Conference on Bioinformatics & Biomedical Engineering. ICBBE: 1-4,2009.
  • 6. ZHEN L., MING W., ZHENG J., SU L. Extraction of phenol from wastewater by N-octanoylpyrrolidine. Journal of Hazardous Materials, 114 (1-3), 111, 2004.
  • 7. OFIR E., OREN Y., ADIN A. Comparing pretreatment by iron of electro-flocculation and chemical flocculation. Desalination, 204 (1), 87, 2007.
  • 8. WANG Y.H., GAO C.J., YANG S.K. Research of victo ria blue B wastewater by coagulation and co-precipitation. Asian Journal of Chemistry, 26 (12), 3600, 2014.
  • 9. KISHIMOTO N., MORITA Y., TSUNO H., OOMURA T., MIZUTANI H. Advanced oxidation effect of ozonation combined with electrolysis. Water Research, 39 (19), 4661, 2005.
  • 10. AYRANCI E., DUMAN O. Adsorption of aromatic organic acids onto high area activated carbon cloth in relation to wastewater purification. Journal of Hazardous Materials, 136 (3), 542, 2005.
  • 11. HUANG Y., WANG L. Application of membrane separation to wastewater treatment. Industrial Water Treatment, 25 (4), 8, 2005.
  • 12. MA J.X., WANG Z.W., XU Y.L., WANG Q.Y., WU Z.C., GRASMICK A. Organic matter recovery from municipal wastewater by using dynamic membrane separation process. Chemical Engineering Journal, 219 (3), 190, 2013.
  • 13. RYOSUKE S., TOSHINARI M., YOICHIRO H., NOBUO N., HIROAKI.I O. Biological treatment of harmful TNT wastewater containing a high concentration of nitrogen compounds by waste activated sludge. Journal of Biotechnology, 150, 226, 2010.
  • 14. WU Z.C., ZHOU M.H., WANG D.H. Synergetic effects of anodic-cathodic electro-catalysis for phenol degradation in the presence of iron (II). Chemosphere, 48 (10),1089, 2002.
  • 15. DECAROLS J., HONG S.K., TAYLOR J. Fouling behavior of a plot scale inside-out hollow fiber UF membrane during dead-end filtration of tertiary wastewater. Journal of Membrane Science, 191 (1-2), 165, 2001.
  • 16. SUN Y., LI Y.W. The technology of wastewater treatment and energy recovery based on UASB reactor. Mechanic Automation and Control Engineering, 8, 4310, 2010.
  • 17. ZHANG Y., YAN L., CHI L. LONG X., MEI Z., ZHANG Z. Startup and operation of anaerobic EGSB reactor treating palm oil mill effluent. Journal of Environmental Sciences, 20 (6), 658, 2008.
  • 18. FUCHS W., BINDER H., MAVRIAS G., BRAUN R. Anaerobic treatment of wastewater with high organic content using a stirred tank reactor coupled with a membrane filtration unit. Water Research, 37 (4), 902, 2003.
  • 19. YIGIT N.O., UZAL N., KOSEOGLU H. HARMAN I., YUKSELER H., YETIS U., CIVELEKOGLU G., KITIS M. Treatment of a denim producing textile industry wastewater using pilot-scale membrane bioreactor. Desalination, 240 (1-3), 143,2009.
  • 20. LESJEAN B., HUISJES E.H. Survey of the European MBR market-trends and perspectives. Desalination, 231 (1-3), 71, 2008.
  • 21. IPEK G., GULERMAM A.S., FILIZ B.D. Importance of H2O2/Fe2+ ratio in Fenton’s treatment of a carpet dyeing wastewater. Journal of Hazardous Materials, 136 (3), 763, 2006.
  • 22. ZAZO J.A., CASAS J.A., MOHEDANO A.F., GILARRANZ, M.A., RODRíGUEZ J.J. Chemical Pathway and Kinetics of Phenol Oxidation by Fenton’s Reagent. Environmental Science & Technology, 39 (23), 9295,2005.
  • 23. YANG D. Physical and oxidation removal of organics during Fenton treatment of matrue municipal landfill leachate. Journal of Hazardous Materials, 146 (1-2), 334, 2007.
  • 24. MARSHALL S.S., INNOCENTIA G.E. Multi-stage EGSB/ MBR treatment of soft drink industry wastewater. Chemical Engineering Journal, 285, 368, 2015.
  • 25. PRETEL R., ROBLES A., RUANO M.V., SECO A., FERRER J. Economic and environmental sustainability of submerged anaerobic MBR-based (AnMBR-based) technology as compared to aerobic-based technologies for moderate-/high-loaded urban wastewater treatment. Journal of Environmental Management, 166, 45, 2015.
  • 26. XU Q.H., HAMID A., WEN X.H., ZHANG B., YANG N.N. Fenton-Anoxic-Oxic/MBR process as a promising process for avermectin fermentation wastewater reclamation. Separation and Purification Technology, 134, 82, 2014.
  • 27. PEREZ J.A.S., CARRA I., SIRTORI C., AGUERA A., ESTEBAN B. Fate of thiabendazole through the treatment of a simulated agro-food industrial effluent by combined MBR/Fenton processes at mg/L scale. Water Research, 51, 55, 2014.
  • 28. PEREZ J.A.S., SANCHEZ I.M.R., CARRA I., REINA A.C., LOPEZ J.L.C., MALATO S. Economic evaluation of a combined photo-Fenton/MBR process using pesticides as model pollutant. Factors affecting costs. Journal of Hazardous Materials, 244-245 (2), 195, 2013.
  • 29. KUO W.G. Decolorizing dye wastewater with Fenton’s reagent. Water Research, 26 (27), 881, 1992.
  • 30. KWON B.G., DONG S.L., KANG N., YOON J. Characteristics of pchlorophenol oxidation by Fenton’s reagent. Water Research, 33 (9), 2110, 1999.
  • 31. KOCHANY J., LUGOWSKI A. Application of Fenton’s reagent and activated carbon for removal of nitrification inhibitors. Environmental Technology, 19 (4), 425, 1998.
  • 32. KAVITHA V., PALANIYELU K. Destruction of cresols by Fenton oxidation process. Water Research, 39 (13), 3062, 2005.
  • 33. GUERREIRO L.F., RODRIGUES C.S.D., DUDA R.M., OLIVEIRA R.A.O., RUI A.R.B., MADEIRA L.M. Treatment of sugarcane vinasse by combination of coagulation/flocculation and Fenton’s oxidation. Journal of Environmental Management, 181, 237, 2016.
  • 34. ABOU-ELELA S.I., ALI M.E.M., IBRAHIM H.S. Combined treatment of retting flax wastewater using Fenton oxidation and granular activated carbon. Arabian Journal of Chemistry, 9 , 511, 2016.
  • 35. FANG S.,WANG C., CHAO B.T. Operating conditions on the optimization and water quality analysis on the advanced treatment of papermaking wastewater by coagulation/Fenton process. Desalination and Water Treatment, 57 (27), 12755, 2015.
  • 36. WEI J., SONG Y.H., MENG X.G., JEAN-STE’PHANE P. Optimization and analysis of homogenous Fenton process for the treatment of dry-spun acrylic fiber manufacturing wastewater. Desalination and Water Treatment, 56, 3036, 2015.
  • 37. VERGILI I., GENCDAL S. Applicability of combined Fenton oxidation and nanofiltration to pharmaceutical wastewater. Desalination and Water Treatment, 56, 3501, 2015.
  • 38. MOUSSAVI M., MATAVOS-ARAMYAN M. Chelatemodified fenton treatment of sulfidic spent caustic. Korean Journal of Chemical Engineering, 33 (8), 2384, 2016.
  • 39. GONZALEZ-PEREZ D.M., PEREZ J.I., NIETO M.Á.G. Carbamazepine behaviour and effects in an urban wastewater MBR working with high sludge and hydraulic retention time. Journal of Environmental Science & Health Part A Toxic/hazardous Substances & Environmental Engineering, 51 (10), 855, 2016.
  • 40. MARTIN-PASCUAL J., LEYVA-AIAZ J.C., POYATOS J.M. Treatment of urban wastewater with pure moving bed membrane bioreactor technology at different filling ratios, hydraulic retention times and temperatures. Annals of Microbiology , 66, 607, 2016.
  • 41. PATSIOS, S.I., PAPAIOANNOU, E.H., KARABELAS,A.J. Long-term performance of a membrane bioreactor treating table olive processing wastewater. Journal of Chemical Technology and Biotechnology, 91 (8), 2253, 2015.
  • 42. ZHUANG H.F., HAN H.G., SHAN S.D. Treatment of British Gas/Lurgi coal gasification wastewater using a novel integration of heterogeneous Fenton oxidation on coal fly ash/sewage sludge carbon composite and anaerobic biological process. Fuel, 178, 155, 2016.
  • 43. SUN W.H., CHEN J., CHEN L.J.,WANG J.L., ZHANG Y.M. Coupled electron beam radiation and MBR treatment of textile wastewater containing polyvinyl alcohol. Chemosphere, 155, 57, 2016.
  • 44. XU Y.D., FAN L.X., HUANG Y.F. Treatment of waste leachate MBR-NF concentrate by Fenton process. Chinese Journal of Environmental Engineering, 8 (9), 3711, 2014.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-1079d9a5-fa44-49c4-bf05-7afed8ab8959
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.