PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 24 | 4 |

Tytuł artykułu

Sustainable production of protein of animal origin – the state of knowledge. Part 2. Aquirements, objectives and ways of sustainbility improvement

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This part describes challenges to improving sustainability during the production of food of animal origin. Some potential advancements in the sustainability of producing food of animal origin, such as feeds that do not compete with human nutrition, plant and animal breeding, trends in animal nutrition, potential alternative protein sources, alternatives of animal products in nutrition, including lower food losses, are discussed in the paper. The potential for reducing gaseous emissions is also an important chapter in this contribution. Complex calculations employing parameters of efficient use of limited resources and reduction of emissions seem to be helpful in finding optimums in production of food of animal origin.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

24

Numer

4

Opis fizyczny

p.283-294,ref.

Twórcy

  • Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Bundesallee 50, 38116 Braunschweig, Germany
autor
  • Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Bundesallee 50, 38116 Braunschweig, Germany

Bibliografia

  • Aerts S., 2012. Agriculture´s 6 Fs and the need for more intensive agriculture. In: T. Potthast, S. Meisch (Editors). Climate Change and Sustainable Development. Wageningen Academic Publishers. Wageningen (the Netherlands), pp. 192–195
  • Aiking H., 2011. Future protein supply. Trends Food Sci. Tech. 22, 112–120
  • Allouche J., 2011. The sustainability and resilience of global water and food systems: Political analysis of the interplay between security, resource scarcity, political systems and global trade. Food Policy 36, Suppl. 1, S3–S8
  • Andersen G., 2011. Food table for the practice: The little Souci-Fachmann-Kraut (in German). Wissenschaftliche Verlagsgesellschaft mbH. Stuttgart (Germany)
  • Andersen M.M., Landes X., Xiang W. et al., 2015. Feasibility of new breeding techniques for organic farming. Trends Plant Sci. 20, 426–434
  • Anupama, Ravindra P., 2000. Value-added food: single cell protein. Biotechnol. Adv. 18, 459–479
  • Attwood G., McSweeney C., 2008. Methanogen genomics to discover targets for methane mitigation technologies and options for alternative H2 utilisation in the rumen. Aust. J. Exp. Agr. 48, 28–37
  • Avadí A., Fréon P., 2013. Life cycle assessment of fisheries: A review for fisheries scientists and managers. Fish. Res. 143, 21–38
  • Baldwin R.L. (Editor), 1995. Modeling Ruminant Digestion and Metabolism. Chapman & Hall. London (UK), pp. 578
  • Bannink A., France J., Lopez S., Gerrits W. J. J., Kebreab E., Tamminga S., Dijkstra J., 2008. Modelling the implications of feeding strategy on rumen fermentation and functioning of the rumen wall. Anim. Feed Sci. Tech. 143, 3–26
  • Baroni L., Cenci L., Tettamanti M., Berati M., 2007. Evaluating the environmental impact of various dietary patterns combined with different food production systems. Eur. J. Clin. Nutr. 61, 279–286
  • Bayaru E., Kanda S., Kamada T., Itabashi H., Andoh S., Nishida T., Ishida M., Itoh T., Nagara K., Isobe Y., 2001. Effect of fumaric acid on methane production, rumen fermentation and digestibility of cattle fed roughage alone. Anim Sci J. 72, 139–146
  • Beauchemin K.A., McAllister T.A., McGinn S.M., 2009. Dietary mitigation of enteric methane from cattle. CAB Reviews. Perspect Agric. Vet. Sci. Nutr. Nat. Res. 4, 1–18
  • Benchaar C., Greathead H., 2011. Essential oils and opportunities to mitigate enteric methane emissions from ruminants. Anim. Feed Sci. Tech. 166–167, 338–355
  • Bessou C., Mary B., Léonard J., Roussel M., Gréhan E., Gabrielle B., 2010. Modelling soil compaction impacts on nitrous oxide emissions in arable fields. Eur. J. Soil Sci. 61, 348–363
  • Blanke M., 2015. Challenges of reducing fresh produce waste in Europe - from farm to fork. Agriculture 5, 389-399
  • Blaxter K.L., Czerkawski J., 1966. Modifications of the methane production of the sheep by supplementation of ITS diet. J. Sci. Food Agric. 17, 417–421
  • Bockisch F.J., Ahlgrimm H.J., Böhme H. et al., 2000. Evaluation of organic and conventional agriculture concerning energy input and greenhouse gas emission output (in German). Landbauforsch Volk SH 211. Braunschweig (Germany), pp. 206
  • Boonen R., Aerts S., De Tavernier J., 2012. Which sustainability suits you? In: T. Potthast, S. Meisch (Editors). Climate Change and Sustainable Development. Wageningen Academic Publishers. Wageningen (the Netherlands), pp. 43–48
  • Bruinsma J., 2009. The resource outlook to 2050: by how much do land, water and crop yields need to increase by 2050? In: How to Feed the World in 2050. Proceedings of a Technical Meeting of FAO Experts. Rome (Italy), pp. 1–33
  • Brundtland G.H., 1987. Our common future - call for action. Environ. Conserv. 14, 291–294
  • Casabona C.M.R., Epifanio L.E.S., Cirion A.E. (Editors), 2010. Global Food Security: Ethical and Legal Callenges. Wageningen Academic Publishers. Wageningen (the Netherlands), pp. 532
  • Cassidy E.S., West P.C., Gerber J.S., Foley J.A., 2013. Redefining agricultural yields: from tonnes to people nourished per hectare. Environ. Res. Lett. 8, pp. 8, doi:10.1088/1748-9326/8/3/034015
  • Day L., 2013. Proteins from land plants - Potential resources for human nutrition and food security. Trends Food Sci. Tech. 32, 25–42
  • de Alvarenga R.A.F., de Silva Júnior V.P., Soares S.R., 2012. Comparison of the ecological footprint and a life cycle impact assessment method for a case study on Brazilian broiler feed production. J. Clean. Prod. 28, 25–32
  • de Vries M., de Boer I.J.M., 2010. Comparing environmental impacts for livestock products: A review of life cycle assessments. Livest. Sci. 128, 1–11
  • Dodson M.V., Vierck J.L., Hossner K.L., Byrne K., McNamara J.P., 1997. The development and utility of a defined muscle and fat coculture system. Tissue Cell 29, 517–524
  • Duval S., Kindermann M., 2012. Nitrooxy alkanoic acids and derivates thereof in feed for reducing methane emission in ruminants, and/or to improve ruminant performance. S. Duval and M. Kindermann, assignees. US Patent No. 20, 120, 315, 339
  • EFSA, 2009. Guidance on safety assessment of botanicals* and botanical preparations** intended for use as ingredients in food supplements. EFSA J. 7, 1249, pp. 19
  • EFSA, 2012. Scientific opinion on dietary reference values for protein. EFSA J. 10, 2557, pp. 66
  • EFSA, 2015. Risk profile related to production and consumption of insects as food and feed EFSA J. 13, 4257, pp. 60
  • EU, 2008. Eurostatistics. Europäische Union; Annual Report FAO, 2006. Livestock´s long shadow. Environmental issues and options. FAO, Rome, pp. 406
  • FAO, 2009. How to feed the world in 2050. FAO, Rome, pp. 35
  • FAO, 2010. Greenhouse gas emissions from the dairy sector. A Life Cycle Assessment. FAO, Rome, pp. 94
  • FAO, 2011. Global food losses and food waste. FAO, Rome, 30
  • FAO, 2013a. FAO Statistical Yearbook. World food and agriculture. FAO, Rome, pp. 289
  • FAO, 2013b. Food loss and waste: Definition and scope. FAO, Rome
  • FAO, 2014. The state of food insecurity in the world 2014. Strengthering the enabling environments for food security and nutrition. FAO, Rome, pp. 55
  • FAO, 2015. Estimating greenhouse gas emissions in agriculture. A manual to address data requirements for developing countries. FAO, Rome, pp. 180
  • Fedoroff N.V., Battisti D.S., Beachy R.N. et al., 2010. Radically rethinking agriculture for the 21st century. Science 327, 833–834
  • Finke M.D., 2004. Nutrient Content of Insects - Organic Value Recovery Solution Studies. Encyclopedia of Entomology No. 10.1007/0-306-48380-7_2920. Springer Verlag
  • Fischer T., Byerlee D., Edmeades G. (Editors), 2014. Crop Yields and Global Food Security: Will Yield Increase Continue to Feed the World? Australian Centre for International Agricultural Research (ACIAR). Canbera (Australia), pp. 634
  • Flachowsky G., 2002. Efficiency of energy and nutrient use in the production of edible protein of animal origin. J. Appl. Anim. Res. 22, 1–24
  • Flachowsky G. (Editor), 2013. Animal Nutrition with Transgenic Plants. CAB International. Wallingford (UK), pp. 234
  • Flachowsky G., 2015. Carbon footprints for food of animal origin. In: P.K. Malik, R. Bhatta, J. Takahashi (Editors). Livestock Production and Climate Change. CAB International. Wallingford (UK), pp. 125–145
  • Flachowsky G., Gruen M., Meyer U., 2013a. Feed-efficient ruminant production: opportunities and challenges. J. Anim. Feed Sci. 22, 177–187
  • Flachowsky G., Hachenberg S., 2009. CO2- footprints for food of animal origin – present stage and open questions. J. Verbr. Lebensm. 4, 190–198
  • Flachowsky G., Kamphues J., 2012. Carbon footprints for food of animal origin: what are the most preferable criteria to measure animal yields? Animal 2, 108–126
  • Flachowsky G., Lebzien P., 2012. Effects of phytogenic substances on rumen fermentation and methane emissions: A proposal for a research process. Anim. Feed Sci. Tech. 176, 70–77
  • Flachowsky G., Meyer U., Gruen M., 2013b. Plant and animal breeding as starting points for sustainable agriculture In: E. Lichtfouse (Editor). Sustainable Agriculture Reviews. Vol. 12. Springer Science + Buisness. Dordrecht (the Netherlands), pp. 201–224
  • Flachowsky G., Meyer U., Südekum K.-H., 2015. Land use for edible protein of animal origin - A review. Food Security (submitted)
  • Flachowsky G., Schulz E., 2011. Sustainability in animal feeding (in German). Annual Book ‘Mühle and Mischfutter’, pp. 189–209
  • Foley J.A., Ramankutty N., Brauman K.A. et al., 2011. Solutions for a cultivated planet. Nature 478, 337–342
  • Forbes J.M. (Editor), 1995. Voluntary Food Intake and Dietary Selection in Farm Animals. CAB International. Wallingford (UK), pp. 453
  • Gahukar R.T., 2011. Entomophagy and human food security. Int. J. Trop. Insect. Sci. 31, 129–144
  • Garnett T., Röös E., Little D., 2015. Lean, green, mean, obscene…? What is efficiency? And it is sustainable? Food Climate Research Network; Environmental Change. Institute & The Oxford Martin Programme on the Future of Food. University of Oxford (UK)
  • GASL (Global Agenda for Sustainable Livestock). 2014. Towards sustainable livestock (available at http://www.livestockdialogue.org/fileadmin/templates/res_livestock/docs/2014_Colombia/2014_Towards_Sustainable_Livestock-dec.pdf)
  • Gerbens-Leenes P.W., Nonhebel S., 2002. Consumption patterns and their effects on land required for food. Ecol. Econ. 42, 185–199
  • Gerbens-Leenes W., Hoekstra A.Y., van der Meer T.H., 2009. The water footprint of bioenergy. Proc. Nat. Acad. Sci. USA 106, 10219–10223
  • Gerber P.J., Steinfeld H., Henderson B., Mottet A., Opio C., Dijkman J., Falcucci A., Tempio G., 2013. Tackling climate change through livestock - A global assessment of emissions and mitigation opportunities. FAO, Rome, pp. 116
  • GfE, 1995. Recommendations for Energy and Nutrient Requirements of Beef Cattle (in German). No. 6. In: Energy and Nutrient Requirements of Domestic Animals. DLG-Verlags-GmbH. Frankfurt (Germany), p. 85
  • GfE, 1999. Recommendations for Energy and Nutrient Requirements of Laying Hens and Broilers (in German). No. 7. In: Energy and Nutrient Requirements of Domestic Animals. DLG-VerlagsGmbH. Frankfurt (Germany), pp. 185
  • GfE, 2001. Recommendations for Energy and Rutrient Requirements of Dairy Cattle and Heifers (in German). No. 8. In: Energy and Nutrient Requirements of Domestic Animals. DLG-Verlags-GmbH. Frankfurt (Germany), pp. 136
  • GfE, 2008. Recommendations for the Supply of Energy and Nutrients to Pigs (in German). In: Energy and Nutrient Requirements of Domestic Animals. DLG-Verlags-GmbH. Frankfurt (Germany), pp.180
  • GfE, 2014. Recommendations for the Supply of Energy and Nutrients of Horses (in German). DLG-Verlags-GmbH. Frankfurt (Germany), p. 192
  • Gill M., Smith P., Wilkinson J. M., 2010. Mitigating climate change: the role of domestic livestock. Animal 4, 323–333
  • Giovannucci D., Scherr S., Nierenberg D., Hebebrand C., Shapiro J., Milder J., Wheeler K., 2012. Food and Agriculture: the future of sustainability. A strategic input to the sustainable development in the 21st Century (SD21) project. New York: United Nations Department of Economic and Social Affairs, Division for Sustainable Development, pp. 94
  • Gordon L.J., Finlayson C.M., Falkenmark M., 2010. Managing water in agriculture for food production and other ecosystem services. Agr. Water Manage 97, 512–519
  • Guillou M., Matheron G. (Editors), 2014. The World’s Challenge - Feeding 9 Billion People. Éditions Quæ. Versailles (France), pp. 226
  • Guyomard H., Darcy-Vrillon B., Esnouf C., Marin M., Russel M., Guillou M., 2012. Eating patterns and food systems: critical knowledge requirements for policy design and implementation. Agric. Food Secur. doi:10.1186/2048-7010-1-13, pp. 13
  • Guyomard H., Manceron S., Peyraud J.L., 2013. Trade in feed grains, animals, and animal products: current trends, future prospects, and main issues. Anim. Front. 3, 14–18
  • Haddad L., Achadi E., Bendech M.A. et al., 2015. The Global Nutrition Report 2014: Actions and accountability to accelerate the world’s progress on nutrition. J. Nutr. 145, 663–671
  • Haisan J., Sun Y., Guan L.L., Beauchemin K.A., Iwaasa A., Duval S., Barreda D.R., Oba M., 2014. The effects of feeding 3-nitrooxypropanol on methane emissions and productivity of Holstein cows in mid lactation. J. Dairy Sci. 97, 3110–3119
  • Hall D.C., Hall J.V., 1984. Concepts and measures of natural-resource scarcity with a summary of recent trends. J. Environ. Econ. Manage 11, 363–379
  • Hanjra M.A., Qureshi M.E., 2010. Global water crisis and future food security in an era of climate change. Food Policy 35, 365–377
  • Hart K.J., Yanez-Ruiz D.R., Duval S.M., McEwan N.R., Newbold C.J., 2008. Plant extracts to manipulate rumen fermentation. Anim. Feed Sci. Tech. 147, 8–35
  • Havlik P., Valin H., Mosnier A., Obersteiner M., Baker J.S., Herrero M., Rufino M.C., Schmid E., 2013. Crop productivity and the global livestock sector: Implications for land use change and greenhouse gas emissions. Amer. J. Agr. Econ. 95, 442–448
  • Hergoualc’h K., Verchot L.V., 2011. Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review. Global Biogeochem. Cycles 25, GB2001; doi/10.1029/2009GB003718/
  • Herrero M., Havlik P., Valin H., Notenbaert A., Rufino M.C., Thornton P.K., Blümmel M., Weiss F., Grace D., Obersteiner M., 2013. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Nat. Acad. Sci. USA. 10, 20888–20893; doi: 10.1073/pnas.1308149110
  • HLPE, 2012. Food security and climate change. A report by the High Level Panel of Experts on Food Security and Nutritionof theCommittee on World Food Security. Rome, pp. 98
  • HLPE, 2014. Food losses and waste in the context of sustainable food systems. A report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security. HPLE Report 8. Rome, pp. 116
  • HLPE, 2015. Sustainable agricultural development for food security and nutrition, including the role of livestock. Draft of the report;www.fao.org/cfs/cfs-hlpe
  • Hobson P.N., Stewart C.S. (Editors), 1997. The Rumen Microbial Ecosystem. Blackie Academic & Profesional, an inprint of Chapman & Hall. London (UK)
  • Hoekstra A.Y., Chapagain A.K., 2007. Water footprints of nations: Water use by people as a function of their consumption pattern. Water Resour. Manage 21, 35–48
  • Hoekstra A.Y., Hung P.Q., 2005. Globalisation of water resources: international virtual water flows in relation to crop trade. Global Environ. Change 15, 45–56
  • Hristov A.N., Oh J., Firkins J.L. et al., 2013a. Mitigation of methane and nitrous oxide emissions from animal operations: A review of enteric methane mitigation options. J. Anim. Sci. 91, 5045–5069
  • Hristov A. N., Ott T., Tricarico J. et al., 2013b. Mitigation of methane and nitrous oxide emissions from animal operations: III A review of animal management mitigation options. J. Anim. Sci. 91, 5095–5113
  • Hungate R.E. (Editor), 1966. The Rumen and its Microbes. Academic Press. New York (USA), pp. 533
  • IPCC (Intergovernmental Panel on Climate Change), 2006. 2006
  • IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme. H.S. Eggleston, L. Buendia, K. Miwa, T. Ngara, Tanabe K. (Editors). IGES, Japan
  • IPCC (Intergovernmental Panel on Climate Change), 2014. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (O. Edenhofer, R. Pichs-Madruga, Y. Sokona et al. (Editors). Cambridge University Press. Cambridge, United Kingdom and New York (USA)
  • IUCN (International Union for Conservation of Nature), 2004. The IUCN Programme 2005–2008. Many Voices, One Earth. Bangkok (Thailand). Available at: https://portals.iucn.org/library/sites/library/files/documents/WCC-3rd-002.pdf
  • Jackson A.A., 2007. Protein. In: J. Mann, S. Truswell (Editors). Essentials of Human Nutrition. 3rd Edition. Oxford University Press (USA), pp. 53–72
  • Johnson K.A., Johnson D.E., 1995. Methane emissions from cattle. J. Anim. Sci. 73, 2483–2492
  • Jouany J.P., 2008. Enteric methane production by ruminants and its control. In: S. Andrieu, D. Wilde (Editors). Gut Efficiency: The Key Ingredient in Ruminant Production. Elevating Animal Performance and Health. Wageningen Academic Publishers. Wageningen (the Netherlands), pp. 35–59
  • Kastner T., Rivas M.J., Koch W., Nonhebel S., 2012. Global changes in diets and the consequences for land requirements for food. Proc. Nat. Acad. Sci. USA 109, 6868–6872
  • Kebreab E. (Editor), 2013. Sustainable Animal Agriculture. CAB International, Wallingford (UK), pp. 321
  • Kebreab E., Clark K., Wagner-Riddle C., France J., 2006. Methane and nitrous oxide emissions from Canadian animal agriculture: A review. Can. J. Anim. Sci. 86, 135–158
  • Keyzer M.A., Merbis M.D., Pavel I.F.P.W., van Wesenbeeck C.F.A., 2005. Diet shifts towards meat and the effects on cereal use: can we feed the animals in 2030? Ecol. Econ. 55, 187–202
  • Lampe C., Dittert K., Sattelmacher B., Wachendorf M., Loges R., Taube F., 2006. Sources and rates of nitrous oxide application of N-15-labelled emissions from grazed grassland after mineral fertilizer and slurry. Soil Biol. Biochem. 38, 2602–2613
  • Lawrence D., Beddington J., Godfray C., Crute I., Haddad L., Muir J., Pretty J., Robinson S., Toulmin C., 2011. The challenge of global food sustainability. Food Policy 36, Suppl. 1, S1–S2
  • Lesschen J.P., van den Berg M., Westhoek H.J., Witzke H.P., Oenema O., 2011. Greenhouse gas emission profiles of European livestock sectors. Anim. Feed Sci. Tech. 166–167, 16–28
  • Lipinski B., Hanson C., Lomax J., Kitinoja L., Waite R., Searchinger T., 2013. Reducing Food Loss and Waste. Working Paper, Installment 2 of Creating a Sustainable Food Future. World Resources Institute. Washington, DC. Available online athttp://www.worldresourcesreport.org
  • Lundy M.E., Parrella M.P., 2015. Crickets are not a Freelunch: protein capture from scalable organic side-streams via high-density populations of Acheta domesticus. PloS One 10, e0118785
  • MacLeod M., Gerber P., Mottet A., Tempio G., Falcucci A., Opio C., Vellinga T., Henderson B., Steinfeld H., 2013. Greenhouse gas emissions from pig and chicken supply chains - A global life cycle assessment. FAO, Rome, pp. 196
  • Makkar H.P.S., 2012. Biofuel co-products as livestock feed - opportunities and challenges. FAO, Rome, pp. 533
  • Makkar H.P.S., Ankers P., 2014. Towards sustainable animal diets: A survey-based study. Anim. Feed Sci. Tech. 198, 309–322
  • Makkar H.P.S., Tran G., Heuze V., Ankers P., 2014. State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Tech. 197, 1–33
  • Malik P.K., Bhatta R., Takahashi J., Kohn R.A., Prasad C.S., 2015. Livestock Production and Climate Change. CAB International. Wallingford (UK), pp. 395
  • Martínez-Fernández G., Abecia L., Arco A., Cantalapiedra-Hijar G., Martín-García A.I., Molina-Alcaide E., Kindermann M., Duval S., Yáñez-Ruiz D.R., 2014. Effects of ethyl-3-nitrooxy propionate and 3-nitrooxypropanol on ruminal fermentation, microbial abundance, and methane emissions in sheep. J. Dairy Sci. 97, 3790–3799
  • Martínez-Fernández G., Acro A., Abecia L., Cantalapiedra-Hijar G., Molina-Alcaide A., Martin-Garcia I., Kindermann M., Duval S., Yanez-Ruiz D.R., 2013. The addition of ethyl-3-nitrooxy propionate and 3-nitrooxypropanol in the diet of sheep substantially reduces methane emissions and the effect persists over a month. Adv. Anim. Biosci. 4, 368 (Abstr.)
  • McKenzie F.C., Williams J., 2015. Sustainable food production: constraints, challenges and choices to 2050. Food Security 7, pp. 221–233
  • Meadows D.L., Meadows D.H., Zahn E., Milline P. (Editors), 1972. Die Grenzen des Wachstums. Bericht des Club of Rome zur Lage der Menschheit. Deutsche Verlags-Anstalt (Germany)
  • Mekonnen M.M., Hoekstra A.Y., 2010. The green, blue and grey water footprint of farm animals and animal products. Value of Water Research Report Sereries No. 48, UNESCO-IHE. Delft (the Netherlands)
  • Meyer U., Everinghoff M., Gädeken D., Flachowsky G., 2004. Investigations on the water intake of lactating dairy cows. Livest. Prod. Sci. 90, 117–121
  • Meyer U., Stahl W., Flachowsky G., 2006. Investigations on the water intake of growing bulls. Livest. Sci. 103, 186–191
  • Molden D. (Editor), 2007. Water for Food, Water for Life: A Comprehensive Assessment of Water Management in Agriculture. Earthscan. London (UK), pp. 645
  • Molden D., Oweis T., Steduto P., Bindraban P., Hanjra M.A., Kijne J., 2010. Improving agricultural water productivity: Between optimism and caution. Agr. Water Manage 97, 528–535
  • Montes F., Meinen R., Dell C. et al., 2013. Special topics–Mitigation of methane and nitrous oxide emissions from animal operations: II. A review of manure management mitigation options. J. Anim. Sci. 91, 5070–5094
  • Morales-Ramos J.A., Rojas M.G., Shapiro-Ilan D. (Editors), 2014. Mass Production of Beneficial Organisms - Invertebrates and Entomopathogens. Academic Press. Elsevier. London (UK), pp. 712
  • Mungkung R., Aubin J., Prihadi T.H., Slernbrouck J., van der Werf H.M.G., Legendre M., 2013. Life cycle assessment for environmentally sustainable aquaculture management: a case study of combined aquaculture systems for carp and tilapia. J. Clean. Prod. 57, 249–256
  • Newman J.A., Anand M., Henry H.A.L., Hunt S., Gedalof Z. (Editors), 2011. Climate Change Biology. CAB International. Wallingford (UK), pp. 289
  • Niemann H., Kuhla B., Flachowsky G., 2011. Perspectives for feedefficient animal production. J. Anim. Sci. 89, 4344–4363
  • Nijdam D., Rood T., Westhoek H., 2012. The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes. Food Policy 37, 760–770
  • NRC, 1987. Predicting Feed Intake of Food Producing Animals. The National Academies Press. Washington, DC, pp. 96
  • NRC, 2015. Critical Role of Animal Science Research in Food Security and Sustainability. The National Academic Press. Washington, DC, pp. 436
  • Oonincx D.G., de Boer I.J., 2012. Environmental impact of the production of mealworms as a protein source for humans - a life cycle assessment. PloS one 7, e51145
  • Oonincx D.G., van Itterbeeck J., Heetkamp M.J., van den Brand H., van Loon J.J., van Huis A., 2010. An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PloS one 5, e14445
  • Opio C., Gerber P., Mottet A., Falcucci A., Tempio G., MacLeod M., Vellinga T., Henderson B., Steinfeld H., 2013. Greenhouse gas emissions from ruminant supply chains - A global life cycle assessment. FAO, Rome, pp.191
  • Parfitt J., Barthel M., Macnaughton S., 2010. Food waste within food supply chains: quantification and potential for change to 2050. Philos. Trans Roy. Soc. London B 365, 3065–3081
  • Pennisi E., 2010. Sowing the seeds for the ideal crop. Science 327, 802–803
  • Peters C.J., Wilkins J.L., Fick G.W., 2007. Testing a complete-diet model for estimating the land resource requirements of food consumption and agricultural carrying capacity: The New York State example. Renewable Agr. Food Syst. 22, 145–153
  • Peters G.M., Rowley H.V., Wiedemann S., Tucker R., Short M.D., Schulz M., 2010. Red meat production in Australia: life cycle assessment and comparison with overseas studies. Environ. Sci. Technol. 44, 1327–1332
  • Pimentel D., Pimentel M., 2003. Sustainability of meat-based and plant-based diets and the environment. Amer. J. Clin. Nutr. 78, 660S-663S
  • Post M.J., 2014. An alternative animal protein source: cultured beef. Ann. NY Acad. Sci. 1328, 29–33
  • Powell J.M., MacLeod M., Vellinga T.V., Opio C., Falcucci A., Tempio G., Steinfeld H., Gerber P., 2013. Feed-milk-manure nitrogen relationships in global dairy production systems. Livest. Sci. 152, 261–272
  • Ranga Niroshan Appuhamy J.A.D., Strathe A.B., Jayasundara S., Wagner-Riddle C., Dijkstra J., France J., Kebreab E., 2013. Anti-methanogenic effects of monensin in dairy and beef cattle: a meta-analysis. J. Dairy Sci. 96, 5161–5173
  • Remling N., Riede S., Lebzien P., Meyer U., Höltershinken M., Kersten S., Breves G., Flachowsky G., Dänicke S., 2014. Effects of fumaric acid on rumen fermentation, milk composition and metabolic parameters in lactating cows. J. Anim. Physiol. Anim. Nutr. 98, 968–981
  • Reynolds C.K., Humphries D.J., Kirton P., Kindermann M., Duval S., Steinberg W., 2014. Effects of 3-nitrooxypropanol on methane emission, digestion, and energy and nitrogen balance of lactating dairy cows. J. Dairy Sci. 97, 3777–3789
  • Reynolds M.P. (Editor), 2010. Climate Change and Crop Production. CAB International. Wallingford (UK), pp. 292
  • Ricci P., Rooke J.A., Nevison I., Waterhouse A., 2013. Methane emissions from beef and dairy cattle: quantifying the effect of physiological stage and diet characteristics. J. Anim. Sci. 91, 5379–5389
  • Roer A.G., Johansen A., Bakken A.K., Daugstad K., Fystro G., Stromman A.H., 2013. Environmental impacts of combined milk and meat production in Norway according to a life cycle assessment with expanded system boundaries. Livest. Sci. 155, 384–396
  • Romero Perez A., Beauchemin K.A., Okine E.K., Duval S.M., 2013. Effects of 3-nitrooxipropanol on methane production using the rumen simulation technique (Rusitec). Adv. Anim. Biosci. 4, 389 (Abstr.)
  • Rounsevell M.D.A., Pedroli B., Erb K.H. et al., 2012. Challenges for land system science. Land Use Policy 29, 899–910
  • Ruane J., Dargie J.D., Mba C., Boettcher P., Makkar H.P.S., Bartley D.M., Sonnino A., 2013. Biotechnologies at work for smallholders: case studies from developing countries in crops, livestock and fish. Occasional papers on “Innovation in Family Farming”. FAO, Rome, pp.198
  • Rumpold B.A., Schlüter O.K., 2013. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 57, 802–823
  • Ruttan V.W., 1999. The transition to agricultural sustainability. Proc. Nat. Acad. Sci .USA 96, 5960–5967
  • SAFA (Sustainable Assessment of Food and Agriculture), 2013. SAFA Indicators. FAO, Rome. Available online at http://www.fao.org/fileadmin/templates/nr/sustainability_pathways/docs/SAFA_Indicators_final_19122013.pdf
  • Sanchez-Muros M.J., Barroso F.G., Manzano-Agugliaro F., 2014. Insect meal as renewable source of food for animal feeding: a review. J. Clean. Prod. 65, 16–27
  • SCAR (Standing Committee on Agricultural Research), 2008. New Challenges for Agricultural Research. Climate Change, Rural Development, Agricultural Knowledge Systems. The 2nd SCAR Foresight Exercise. European Commission, Brussels (Belgium), pp. 112
  • Schlink A.C., Nguyen M.L., Viljoen G.J., 2010. Water requirements for livestock production: a global perspective. Rev. Sci. Tech. 29, 603–619
  • Scholz R.W., Wellmer F.W., 2013. Approaching a dynamic view on the availability of mineral resources: What we may learn from the case of phosphorus? Global Environ. Change 23, 11–27
  • Smil V. (Editor), 2000. Feeding the World: A Challenge for the Twenty-First Century. The MIT Press. Cambridge, MA (USA), pp. 390
  • Smith J., Sones K., Grace D., MacMillan S., Tarawali S., Herrero M., 2013a. Beyond milk, meat, and eggs: role of livestock in food and nutrition security. Anim. Front. 3, 6–13
  • Smith P., Gregory P.J., van Vuuren D., Obersteiner M., Havlik P., Rounsevell M., Woods J., Stehfest E., Bellarby J., 2010. Competition for land. Philos. Trans. Roy. Soc. London, 365, 2941–2957
  • Smith P., Haberl H., Popp A. et al., 2013b. How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Global Change Biol. 19, 2285–2302
  • Souci S.W., Fachmann W., Kraut H., 2008. Food table for the practice. The little Souci-Fachmann-Kraut (in German). 7th Edition. Deutsche Forschungsanstalt für Lebensmittelchemie. Freising, Wiss.Verlagsgesellschaft mbH. Stuttgart (Germany), pp. 1364
  • Speijers G., Bottex B., Dusemund B., Lugasi A., Tóth J., AmbergMüller J., Galli C.L., Silano V., Rietjens I.M.C.M., 2010. Safety assessment of botanicals and botanical preparations used as ingredients in food supplements: Testing an European Food Safety Authority-tiered approach. Mol. Nutr. Food Res. 54, 175–185
  • Stevens R.J., Laughlin R.J., Burns L.C., Arah J.R.M., Hood R.C., 1997. Measuring the contributions of nitrification and denitrification to the flux of nitrous oxide from soil. Soil Biol. Biochem. 29, 139–151
  • Strzepek K., Boehlert B., 2010. Competition for water for the food system. Philos. Trans Roy. Soc. London B 365, 2927–2940
  • Tester M., Langridge P., 2010. Breeding technologies to increase crop production in a changing world. Science 327, 818–822
  • The Royal Society, 2009. Reaping the benefits: Science and the sustainable intensification of global agriculture. The Royal Society Policy, document 11/09, issued Oct. 2009, RS1608
  • Thompson B., Amoroso L. (Editors), 2014. Improving Diets and Nutrition: Food-based Approaches. FAO and CAB International. Wallingford (UK), pp. 403
  • Thornton P.K., 2010. Livestock production: recent trends, future prospects. Philos. Trans Roy. Soc. London B 365, 2853–2867
  • Tillie P., Dillen K., Rodriguez-Cerezo E., 2013. The pipeline of GM crops for improved animal feed: challenges for commercial use. In: G. Flachowsky (Editor). Animal Nutrition with Transgenic Plants. CAB International, Wallingford (UK), pp. 166–192
  • Upham P., Dendler L., Bleda M., 2011. Carbon labelling of grocery products: public perceptions and potential emissions reductions. J. Clean. Prod. 19, 348–355
  • Van Eenennaam A.L., Young A.E., 2014. Prevalence and impacts of genetically engineered feedstuffs on livestock populations. J. Anim. Sci. 92, 4255–4278
  • van der Spiegel M., Noordam M.Y., van der Fels-Klerx H.J., 2013. Safety of novel protein sources (insects, microalgae, seaweed, duckweed, and rapeseed) and legislative aspects for their application in food and feed production. Compr. Rev. Food Sci. Food Saf. 12, 662–678
  • van Huis A., 2013. Potential of insects as food and feed in assuring food security. Annu. Rev. Entomol. 58, 563–583
  • Van Soest P.J., 1994. Nutritional Ecology of the Ruminant. 2nd Edition. Cornell University Press. Ithaca, NY (USA)
  • Vandehaar M.J., 1998. Efficiency of nutrient use and relationship to profitability on dairy farms. J. Dairy Sci. 81, 272–282
  • Vermeulen S.J., Campbell B.M., Ingram J.S.I., 2012. Climate change and food systems. Annu. Rev. Environ. Resour. 37, 195–222
  • Viljoen A., Wiskerke J.S.C. (Editors), 2012. Sustainable Food Planning: Evolving Theory and Practice. Wageningen Academic Publishers. Wageningen (the Netherlands), pp. 600
  • von Carlowitz H.C., 1713. Sylviculture Oeconomica, Anweisung zur wilden Baum-Zucht. Braun Verlag Leipzig, pp.105–106
  • Wals A.E.J., Corcoran P.B. (Editors), 2012. Learning for Sustainability in Times of Accelerating Change. Wageningen Academic Publishers. Wageningen (the Netherlands), pp. 550
  • Wennemer H., Flachowsky G., Hoffmann V., 2006. Protein, Population, Politics - How Protein can be Supplied Sustainable in the 21st century. Plexus Verlag. Mittenberg and Frankfurt/Main, pp. 160
  • WHO/FAO/UNU, 2007. Protein and amino acid requirements in human nutrition. Report of a joint FAO/WHO/UNU expert consultation. World Health Organization United Nations University. WHO Technical Report Series 935, pp. 265
  • Williams A.G., Audsley E., Sanders D.L., 2006. Determining the environmental burdens and resource use in the production of agricultural and horticultural commodities. Main Report. Defra Research Project IS0205, Bedford: Cranfield University and Defra, pp. 97. Available on www.silsoe.cranfied.ac.uk, and www.defra.gov.uk
  • Wirsenius S., Azar C., Berndes G., 2010. How much land is needed for global food production under scenarios of dietary changes and livestock productivity increases in 2030? Agr. Syst. 103, 621–638
  • Wu G., Bazer F.W., Cross H.R., 2014a. Land-based production of animal protein: impacts, efficiency, and sustainability. Ann. NY Acad. Sci. 1328, 18–28
  • Wu G., Fanzo J., Miller D.D., Pingali P., Post M., Steiner J.L., Thalacker-Mercer A.E., 2014b. Production and supply of high-quality food protein for human consumption: sustainability, challenges, and innovations. Ann. NY Acad. Sci. 1321, 1–19
  • Young W., Hwang K., McDonald S., Oates C.J., 2010. Sustainable consumption: green consumer behaviour when purchasing products. Sustain. Dev. 1, 20–31
  • Zehetmeier M., Baudracco J., Hoffmann H., Heißenhuber A., 2012. Does increasing milk yield per cow reduce greenhouse gas emissions? A system approach. Animal 6, 154–166
  • Zepka L.Q., Jacob-Lopes E., Goldbeck R., Souza-Soares L.A., Queiroz M.I., 2010. Nutritional evaluation of single-cell protein produced by Aphanothece microscopica Nägeli. Bioresource Technol. 101, 7107–7111

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-1072cb45-9f6f-4c6b-b07f-2971969b3bd1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.