Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 11 | 4 |
Tytuł artykułu

Modelling moisture diffusivity and energy consumption of cantaloupe seeds in fixed and fluidized bed conditions

Treść / Zawartość
Warianty tytułu
Języki publikacji
Background. The main goal in cantaloupe seed drying is the reduction of its moisture content to a safe level, allowing storage in a long period of time. Fluidized bed dryer is a drying process with better heat and mass transfer and shorter drying time. This method is a gentle and uniform drying procedure. Fluidized bed is suitable for sensitive and high moisture materials. Drying parameters of moisture diffusivity and energy are vitally important in modelling and optimizing of the seed dryer system. Material and methods. This study investigated thin layer characteristics of cantaloupe seeds under fixed, semi fluidized and fluidized bed drying with initial moisture content about 61.99% (d.b.). A laboratory fluidized bed dryer was utilized in this research. Air temperature levels of 45, 55, 65 and 75°C were applied in drying experiments. Effective moisture diffusivity (Z)efr) of cantaloupe seeds was computed by Fick’s second law in diffusion. Activation energy and specific energy consumption of cantaloupe seeds under different drying conditions were calculated. Results. Calculated values of Deff for drying experiments were in the range of 2.23TO40 and 8.61 -10'10 m2/s. Values of Deff increased as the input air temperature increased. Activation energy values were computed between 39.21 and 37.55 kJ/mol for 45°C to 75°C, respectively. Specific energy consumption for cantaloupe seeds was calculated at the boundary of 1.58 105 and 6.18105 kJ/kg. Conclusion. Results indicated that applying the fluidized bed condition is morę effective for convective drying of cantaloupe seeds. Increasing air velocity tends to decrease in activation energy. Decreasing in drying air temperaturę in different bed conditions caused increase in the energy value. The aforesaid drying parameters are necessary to optimize the operational condition of fluidized bed dryer and to perfect design of the system.
Słowa kluczowe
Opis fizyczny
  • Department of Mechanics of Agricultural Machinery, Bu-Ali Sina University 6517833131, Hamedan, Iran
  • Aghbashlo M., Kianmehr M.H., Samimi-Akhijahani H., 2008. Influence of drying conditions on the effective moisture diffusivity, energy of activation and energy consumption during the thin-layer drying of beriberi fmit (Berberidaceae). Ener. Conv. Manag. 49, 2865-2871.
  • Amiri Chayjan R., Amiri Parian J., Esna-Ashari M., 2011. Modelling of moisture diffusivity, activation energy and specific energy consumption of high moisture com in a fixed and fluidized bed convective dryer. Spanish J. Agric. Res. 9, 28-40.
  • Amiri Chayjan R., Khosh Taghaza M.H., Montazer G., Minaee S., Alizadeh M.R., 2009. Estimation of head rice yield using artificial neural networks for fluidized bed drying of rough rice. J. Agic Sci. Technol. Natural Res. 13 (48), 285-299 [inFarsi].
  • AOAC. 2002. Official methods of analysis. Assoc. Offic. Anal. Chem. Arlington, USA.
  • Ammuganathan T., Manikantan M.R., Rai R.D., Anandakumar S., Khare V., 2009. Mathematical modelling of drying kinetics of milky mushroom in a fluidized bed dryer. Int. Agrophys. 23, 1-7.
  • Babalis S.J., Belessiotis V.G., 2004. Influence of drying conditions on the drying constants and moisture diffusivity during the thin-layer drying of figs. J. Food Eng. 65, 449-458.
  • Chayjan A.R., Salari K., Barikloo H., 2012. Modelling moisture diffusivity of pomegranate seed cultivars under fixed, semifluidized and fluidized bed using mathematical and neural network methods. Acta Sci. Pol., Technol. Aliment. 11 (2), 131-148.
  • Chayjan R.A., Peyman M.H., Esna-Ashari M., Salari K., 2011. Influence of drying conditions on diffusivity, energy and color of seedless grape after dipping process. Aust. J. Crop Sci. 5 (1), 96-103.
  • Doymaz I., 2004. Effect of pre-treatments using potassium metabisulphite and alkaline ethyl oleate on the drying kinetics of apricots. Biosyst. Eng. 89, 281-287.
  • Doymaz I., 2007. The kinetics of forced convective air-dry- ing of pumpkin slices. J. Food Eng. 79, 243-248.
  • FAOSTAT. 2009. FAO statistics data base on the world wide web. [online], [accessed: May 2011],
  • Gazor H.R., Mohsenimanesh A., 2010. Modelling drying kinetics of canola in fluidized bed dryer. Czech J. Food Sci. 28, 531-537.
  • Goyal R.K., Kingsly A.R.P., Manikantan M.R., Ilyas S.M., 2007. Mathematical modelling ofthin layer drying kinetics of plum in a tunnel dryer. J. Food Eng. 79, 176-180.
  • Hashemi G., Mowla D., Kazemeini M., 2009. Moisture diffusivity and shrinkage of broad beans during bulk drying in an inert medium fluidized bed dryer assisted by dielectric heating. J. Food Eng. 92, 331-338.
  • Khoshtaghaza M.H., Sadeghi M., Amiri Chayjan R., 2007. Study of rough rice drying process in fixed and fluidized bed conditions. J. Agric Sci. Natural Res. 14 (2), 127-137 [inFarsi],
  • Kingsly A.R.P., Goyal R.K., Manikantan M.R., Ilyas S.M., 2007. Effects of pretreatments and drying air temperature on drying behavior of peach slice. Int. J. Food Sci. Technol. 42, 65-69.
  • Koyuncu T., Pinar Y., Lule F., 2007. Convective drying characteristics of azarole red (Crataegus monogyna Jacq.) and yellow (Crataegus aronia Bose.) fruits. J. Food Eng. 78, 1471-1475.
  • Kunii D., Levenspiel O., 1991. Fluidization engineering. Butterworth-Heinemann Stoneham, USA.
  • Pala M., Mahmutoglu T., Saygi B., 1996. Effects of pretreatments on the quality of open-air and solar dried products. Food 40, 137-141.
  • Sacilik K., 2007. Effect of drying methods on thin-layer drying characteristics of hull-less seed pumpkin (Cucurbita pepo L.). J. Food Eng. 79,23-30.
  • Seyedabadi E., Khojastehpourb M., Sadmia H., Saiedirad M.H., 2011. Mass modelling of cantaloupe based on geometrie attributes: A case study for Tile Magasi and Tile Shahri. Sci. Hort. 130, 54-59.
  • Soponronnarit S., Pongtomkulpanich A., Prachayawarakom S., 1997. Drying characteristics of com in fluidized bed dryer. Drying Technol. 15 (5), 1603-1615.
  • Souraki B.A., Mowla D., 2007. Axial and radial moisture diffusivity in cylindrical fresh green beans in a fluidized bed dryer with energy carrier: modelling with and without shrinkage. J. Food Eng. 88, 9-19.
  • Vouldoukis I., Lacan D., Kamate C., Coste P., Calenda A., Mazier D., Conti M., Dugas B., 2004. Antioxidant and anti-inflammatory properties of a Cucumis melo LC. Extract rich in superoxide dismutase activity. J. Ethnopharm. 94 (1), 67-75.
  • Zhang Q., Yang S.X., Mittal G.S., Yi S., 2002. Prediction of performance indices and optimal parameters of rough rice drying using neural network. Biosyst. Eng. 83 (3), 281-290.
Rekord w opracowaniu
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.