Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 20 | 2 |
Tytuł artykułu

Determination of the tolerance of sunflower to lead-induced stress

Treść / Zawartość
Warianty tytułu
Języki publikacji
Six-week old sunflower seedlings, cv. Ogrodowy, were treated with 0, 15, 45 and 60 mg Pb dm-3, and then the content of lead and selected physiological and biochemical parameters were measured. Photosynthesis efficiency, water relations (intensity of transpiration, relative water content (RWC)) and gene-encoding metallothionein were measured three times after 24, 48 and 72 hours of exposure to Pb. The content of glutathione and lead was analysed after 72 hours’ exposure to Pb. Most of the lead uptake was accumulated in the roots, then in the stems and leaves, but when re-calculated per plant dry weight, the uptake of the metal did not depend on the lead dose applied. The highest 60 mg Pb dm-3 treatment was accompanied by a significant decrease in dry weight content. Moreover, most of the lead taken up in these plants was transported to the stems and leaves (23.6% of total lead uptake). The lead doses used in this study did not affect the intensity of photosynthesis, but a decrease in transpiration and relative water content was observed. The glutathione level in the plants varied depending on the organ examined and the Pb concentration in the treatment. The expression of the metallothionein gene HaMT1 was observed in the stems only. These results indicate that the sunflower cultivar Ogrodowy is a promising plant for phytoremediation of lead-polluted soils.
Opis fizyczny
  • Laboratory for Basic Research in Horticulture, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences - SGGW, 159 Nowoursynowska St., 02-776 Warsaw, Poland
  • Laboratory for Basic Research in Horticulture, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
  • Laboratory for Basic Research in Horticulture, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
  • Alkorta I., Hernandez-Allica J., Becerril J.M., Amezaga I., Albizu I., Garbisu C. 2004. Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead and arsenic. Rev. Environ. Sci. Biotechnol., 1: 71-90.
  • Bharwana S.A., Ali S., Farooq M.A., Iqbal N., Ahmad M.S.A. 2013. Alleviation of lead toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes suppressed lead uptake and oxidative stress in cotton. J. Bioremed. Biodeg., 4: 4.
  • Cenkc i S., Cigerci I.H., Yildiz M., Özay C., Bozdag A., Terzi H. 2010. Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environ. Exp. Bot., 67(3): 467-473.
  • Chang T., Liu X., Xu H., Meng K., Chen S., Zhu Z. 2004. A metallothionein-like gene htMT2 strongly expressed in internodes and nodes of Helianthus tuberosus and effects of metal ion treatment on its expression. Planta, 218(3): 449-455.
  • Chen H., Cutright T. 2001. EDTA and HEDTA effects on Cd, Cr and Ni uptake by H. annuus. Chemosphere, 45: 21-28.
  • Cunningham S.D., Ow D.W. 1996. Promises and prospects of phytoremediation. Plant Physiol., 110: 715-719.
  • Freeman J.L., Persans M.W., Nieman K., Albrrecht C., Peer W., Pick ering I.J., Salt D.E. 2004. Increased glutathione biosynthesis plays a role in nickel tolerance in thlaspi nickel hyperaccumulators. Plant Cell, 16: 2176-2179.
  • Gavanji S., Larki B., Mojiri A. 2014. Bioinformatics Prediction of Metal Binding Sites in Metallothionein Proteins. In silico prediction of metal binding sites. J. Bioinform., 1(1): 20-25.
  • Geebelen W., Vangrosveld J., Adriano D., Van Pouck e Lc, Clijsters H. 2002. Effect of Pb-EDTA and EDTA on an oxidative stress reaction and mineral uptake in Phaseolus vulgaris. Physiol. Plant., 115(3): 377-384.
  • Gupta D.K., Huang H.G., Yang X.E., Razafindrabe B.H.E., Inouhe M. 2010. The detoxification of lead in Sedum alfredii H. is not related to phytochelatins but glutathione. J. Hazard Mater., 177(1-3): 437-444.
  • Hall J.L. 2002. Cellular mechanisms for heavy metal detoxification and tolerance. Exp. Bot., 53: 1-11.
  • Islam E., Yang X., Li T., Liu D., Jin X., Meng F. 2007. Effect of Pb toxicity on root morphology, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J. Hazard Mater., 147(3): 806-816.
  • Jiang W., Liu D., Li H. 2000. Effects of Cu2+ on root growth, cell division, and nucleolus of Helianthus annuus L. Sci. Total Environ., 256: 59-65.
  • Kumar P.B., Dushenkov V., Motto H., Raskin I. 1995. Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Tech., 29: 1232-1238.
  • Łata B., Przeradzka M., Bińkowska M. 2005. Great differences in antioxidant properties exist between 56 apple cultivars and vegetation seasons. J. Agric. Food Chem., 53(23): 8970-8978.
  • Liu D., Li T., Jin X., Yang X., Islam E., Mahmood Q. 2008. Lead induced changes in the growth and antioxidant metabolism of the lead accumulating and non-accumulating ecotypes of Sedum alfredii. J. Integr. Plant Biol., 50(2): 129-140.
  • Marchiol L., Assolari S., Sacc o P., Zerbi G. 2004. Phytoextraxtion of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil. Environ. Pollut., 132: 21-27.
  • Meers E., Ruttens A., Hoopqood M., Lesage E., Tack F.M. 2005. Potential of Brassica rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils. Chemosphere, 61(4): 561-72.
  • Mejare M., Bulow L. 2001. Metal binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol., 19(2): 67-75.
  • Niu Z.-H., Sun L.-N., Sun T.-H., Li Y.-S., Wang H. 2007. Evaluation of phytoextracting cadmium and lead by sunflower, ricinus, alfalfa and mustard in hydroponic culture. J. Environ. Sci., 19: 961-967.
  • Noctor G., Strohm M., Jouanin L., Kunert K.J., Foyer Ch.H., Rennenberg H. 1996. Synthesis of glutathione in leavel of transgenic poplar overexpressing γ-glutamylcysteine synthetase. Plant Physiol., 112: 1071-1078.
  • Penugonda S., Ercal N. 2004. Toxic metals and oxidative stress. Part II. Role of antioxidants in metal-induced oxidative damage. Curr. Top. Tox., 1: 53-71.
  • Piechalak A., Tomaszewska B., Baralkiewicz D. Maleck a A. 2002. Accumulation and detoxification of lead in legumes. Phytochemistry, 60: 153-162.
  • Poschenrieder Ch., Gunse B., Borcelo J. 1989. Influence of cadmium on water relations, stomatal resistance, and abscisic acid content in expanding bean leaves. Plant Physiol., 90: 1365-1371.
  • Romanowska E., Wróblewska B., Drozak A., Siedleck a M. 2006. High light intensity protects photosynthetic apparatus of pea plants against exposure to lead. Plant Physiol. Biochem., 44(5-6): 387-394.
  • Schűtzendűbel A., Polle A. 2002. Plant responses to abiotic stresses: heavy metal- induced oxidative stress and protection by mycorrhization. J. Exp. Bot., 53: 1352-1365.
  • Seth Ch., Misra V., Singh R., Zolla L. 2011. EDTA-enhanced lead phytoremediation in sunflower (Helianthus annuus L.) hydroponic culture. Plant Soil, 347(1-2): 231.
  • Singh R., Tripathi R.D., Dwivedi S., Kumar A., Trivedi P.K., Chakrabarty D. 2010. Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system. Bioresour Technol., 101(9): 3025-3032.
  • Singh R.P., Tripathi R.D., Sinha S.K., Maheshwari R. 1997. Response of higher plants to lead contaminated environment. Chemosphere, 34: 2467-2493.
  • Stancheva I., Geneva M., Markovska Y., Tzvetkova N., Mitova I., Todorova M., Petrov P. 2014. A comparative study on plant morphology, gas exchange parameters, and antioxidant response of Ocimum basilicum L. and Origanum vulgare L. grown on industrially polluted soil. Turk. J. Biol., 38: 89-102.
  • Wang C.R., Tian Y., Wang X.R., Yu H.X., Lu X.W., Wang C., Wang H. 2010. Hormesis effects and implicative application in assessment of lead-contaminated soils in roots of Vicia faba seedlings. Chemosphere, 80(9): 965-71. DOI: 10.1016/j.chemosphere. 2010.05.049
  • Weryszk o-Chmielewska E., Chwil M. 2005. Lead-induced histological and ultrastructural changes in the leaves of soybean (Glycine max (L.) Merr.). Soil Sci. Plant Nutr., 51(2): 203-212.
  • Xiong Z., Zhao F., Li M. 2006. Lead toxicity in Brassica pekinensis Rupr. effect on nitrate assimilation and growth. Environ. Toxicol., 21(2): 147-153.
  • Zhixin Niu, Sun Lina; Tieheng Sun. 2009. Response of root and aerial biomass to phytoextraction of Cd and Pb by sunflower, castor bean, alfalfa and mustard. Adv. Environ. Biol., 3(3): 255.
  • Zhou J., Goldbrough P.B. 1995. Structure, organization and expression of the metallothionein gene family in Arabidopsis. Mol. Gen. Genet., 248: 318-328.
  • Zhou J., Goldsbrough P.B. 1994. Functional homologues of fungal metallothionein genes from Arabidopsis. Plant Cell, 6: 875-884.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.