PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 2 |

Tytuł artykułu

Soil aggregate stability and associated structure affected by long-term fertilization for a loessial soil on the loess plateau of China

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Agricultural management practices play an important role in soil structure and fertility. However, there is a lack of knowledge on the effects of long-term fertilization on aggregate structure in the Loess Plateau region in China. This study was devoted to examining the responses of soil aggregate stability and associated structure to fertilizers over 19 years under a soybean (Glycine max L.)-corn (Zea Mays) rotation. Treatments included unfertilized control (CK); nitrogen (N), phosphorus (P), and NP chemical fertilizers; and manure (M) and MN, MP and MNP organic/chemical combinations. The results showed that the water-stable aggregates, mean weight diameter, geometric mean diameter, aggregate state, and aggregate degree decreased in chemical fertilizers (N, P, and NP). However, it increased in all treatments containing manure (M, MN, MP, and MNP) compared to the CK. The changes in dispersion rate and fractal dimension were opposite to those indicators in all treatments. The applications of chemical fertilizers do guarantee an increase in crop yield, but only organic fertilizers significantly improved soil structure. These results suggest that manure’s incorporation into loessial soil is a preferred strategy for sustainable soil management.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

2

Opis fizyczny

P.827-835,fig.,ref.

Twórcy

autor
  • State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China
  • State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
autor
  • State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China
autor
  • Yulin University, Yulin, Shaanxi 719000, China
autor
  • College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China

Bibliografia

  • 1. BRONICK C.J., LAL R. Soil structure and management: a review. Geoderma. 124 (1-2), 3, 2005.
  • 2. MENG Q.F., SUN Y.T., ZHAO J., ZHOU L.R., MA X.F., ZHOU M., GAO W., WANG G.C. Distribution of carbon and nitrogen in water-stable aggregates and soil stability under long-term manure application in solonetzic soils of the Songnen plain, northeast China. J. Soil Sediment. 14 (6), 1041, 2014.
  • 3. NAVEED M., MOLDRUP P., VOGEL H.J., LAMANDÉ M., WILDENSCHILD D., TULLER M., JONGE L.W.D. Impact of long-term fertilization practice on soil structure evolution. Geoderma. 217, 181, 2014.
  • 4. CAMPELL C.A, SELLES F., LAFOND G.P., BIEDERBECK V.O., ZENTNER R.P. Tillage-Fertilizer changes: effect on soil quality attributes under long-term crop rotations in a thin Black Chernozem. Can. J. Soil Sci. 81 (2), 157, 2001.
  • 5. SU Y.Z., WANG F., SUO D.R., ZHANG Z.H., DU M.W. Long-term effect of fertilizer and manure application on soil-carbon sequestration and soil fertility under the wheat-wheat-maize cropping system in northwest China. Nutr. Cycl. Agroecosys. 75 (1), 285, 2006.
  • 6. EFTHIMIADOU A., BILALIS D., KARKANIS A., FROUD-WILLIAMS B. Combined organic/inorganic fertilization enhance soil quality and increased yield, photosynthesis and sustainability of sweet maize crop. Aust. J. Crop Sci. 4 (9), 722, 2010.
  • 7. YANG W., LI Z.X., CAI C.F., GUO Z.L., CHEN J.Z., WANG J.G. Mechanical properties and soil stability affected by fertilizer treatments for an Ultisol in subtropical China. Plant Soil. 363 (1), 157, 2013.
  • 8. MAZUR Z., MAZUR T. Effects of long-term organic and mineral fertilizer applications on soil nitrogen content. Pol. J. Environ. Stud. 24 (5), 2073, 2015.
  • 9. LI Q., XU M.X., LIU G.B., ZHAO Y.G., TUO D.F. Cumulative effects of a 17-year chemical fertilization on the soil quality of cropping system in the Loess Hilly Region, China. J. Plant Nutr. Soil Sc. 176 (2), 249, 2013.
  • 10. HAYNES R.J., NAIDU R. 1998. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review. Nutr. Cycl. Agroecosys. 51 (2), 123, 1998.
  • 11. SIMANSKY V., TOBIASOVA E., CHLPIK J. Soil tillage and fertilization of Orthic Luvisol and their influence on chemical properties, soil structure stability and carbon distribution in water-stable macroaggregates. Soil Till. Res. 100 (1), 125, 2008.
  • 12. MUNKHOLM L.J., SCHJONNING P., DEBOSZ K., JENSEN H.E., CHRISTENSEN B.T. Aggregate strength and mechanical behavior of a sandy loam soil under longterm fertilization treatments. Eur. J. Soil Sci. 53 (1), 129, 2002.
  • 13. RASOOL R., KUKAL S.S., HIRA G.S. Soil organic carbon and physical properties as affected by long-term application of FYM and inorganic fertilizers in maize-wheat system. Soil Till. Res. 101, 31, 2008.
  • 14. LIU Z.X., CHEN X.M., JING Y., LI Q.X., ZHANG J.B., HUANG Q.R. Effects of biochar amendment on rapeseed and sweet potato yields and water stable aggregate in upland red soil. Catena. 123, 45, 2014.
  • 15. KIHARA J.A., BATIONO D.N., MUGENDI C., MARTIUS C., VLEK P.L.G. 2011. Conservation tillage, local organic resources and nitrogen fertilizer combinations affect maize productivity, soil structure and nutrient balances in semi-arid Kenya. Nutr. Cycl. Agroecosys. 90 (2), 213, 2011.
  • 16. YU H.Y., DING W.X., LUO J.F., GENG R.L., GHANI A., CAI C.Z. Effects of long-term compost and fertilizer application on stability of aggregate-associated organic carbon in an intensively cultivated sandy loam soil. Biol. Fert. Soils. 48 (3), 325, 2012.
  • 17. VILLAR M.C., PETRIKOVA V., DÍAZ-RAVIÑA M., CARBALLAS T. Changes in soil microbial biomass and aggregate stability following burning and soil rehabilitation. Geoderma. 122 (1), 73, 2004.
  • 18. ABIVEN S., MENASSERI S., CHENU C. The effects of organic inputs over time on soil aggregate stability-a literature analysis. Soil Biol. Biochem. 41 (1), 1, 2009.
  • 19. ZHAO S.W., SU J., YANG Y.H., LIU N.N., WU J.S., SHANGGUAN Z.P. 2006. A fractal method of estimating soil structure changes under different vegetations on Ziwuling mountains of the Loess Plateau, China. J. Integr. Agr. 5 (7), 530, 2006.
  • 20. SIX J., PAUSTIAN K., ELLIOTT E.T., COMBRINK C. Soil structure and organic matter: I. Distribution of aggregate-size classes and aggregate-associated carbon. Soil Sci. Soc. Am. J. 64 (2), 681, 2000.
  • 21. SEYBOLD C.A. Aggregate stability kit for soil quality assessments. Catena. 44 (1), 37, 2001.
  • 22. BARTHES B., ROOSE E. Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels. Catena. 47 (2), 133, 2002.
  • 23. XU M.X., ZHAO Y.G., LIU G.B., WILSON G. Identification of soil quality factors and indicators for the Loess Plateau of China. Soil Science. 171 (5), 400, 2006.
  • 24. XIAO L., LIU G.B., XUE S., ZHANG C. Fractal features of soil profiles under different land use patterns on the Loess Plateau, China. J. Arid Land. 6 (5), 550, 2014.
  • 25. PERRIER E., BIRD N., RIEU M. Generalizing the fractal model of soil structure: the pore-solid fractal approach. Geoderma. 88 (3-4), 137, 1999.
  • 26. SU Y.Z., ZHAO H.L., ZHAO W.Z., ZHANG Z.H., DU M.W. Fractal features of soil particle-size distribution and the implication for indicating desertification. Geoderma. 122 (1), 43, 2004.
  • 27. AHMADI A., NEYSHABOURI M.R., ROUHIPOUR H., ASADI H. Fractal dimension of soil aggregates as an index of soil erodibility. J. Hydrol. 400 (3-4), 305, 2011.
  • 28. WANG L., LI J., LI J., BAI W.X. Effects of tillage rotation and fertilization on soil aggregates and organic carbon content in cornfield in Weibei Highland. Chinese Journal of Applied Ecology. 25 (5), 759, 2014 [In Chinese].
  • 29. QIU L.P., ZHANG X.C., CHENG J.M. Effects of 22 years of re-vegetation on soil quality in the semi-arid area of the Loess Plateau. Afr. J. Biotechnol. 8 (24), 6896, 2009.
  • 30. YANG Z.H., SINGH B.R., HANSEN S. Aggregate associated carbon, nitrogen and sulfur and their ratios in long-term fertilized soils. Soil Till. Res. 95 (1-2), 161, 2007.
  • 31. RASMUSSEN P.E., GOULDING K.W.T., BROWN J.R., GRACE P.R., JANZEN H.H., KORSCHENS M. Longterm agroecosystem experiments: assessing agricultural sustainability and global change. Science. 282 (5390), 893, 1998.
  • 32. LI Y.Y., SHAO X.H., GUAN W.L., REN L., LIU J., WANG J.L., WU Q.J. Nitrogen-decreasing and yield-increasing effects of combined applications of organic and inorganic fertilizers under controlled irrigation in a paddy field. Pol. J. Environ. Stud. 25 (2), 673, 2016.
  • 33. ZHANG C., LIU G.B., XUE S., SUN C.L. Soil organic carbon and total nitrogen storage as affected by land use in a small watershed of the Loess Plateau, China. Eur. J. Soil Sci. 54, 16, 2013.
  • 34. YODER R.E. A direct method of aggregate analysis of soils and study of the physical nature of soil erosion losses. Amer. Soc. Agronomy. 28, 337, 1936.
  • 35. ZHANG C., LIU G.B., XUE S., SONG Z.L., ZHANG C.S. Fractal features of rhizosphere soil microaggregate and particle-size distribution under different vegetation types in the hilly-gully region of Loess Plateau. Scientia Agricultura Sinica. 44 (3), 507, 2011 [In Chinese].
  • 36. NELSON D.W., SOMMERS L.E. Total carbon, organic carbon, and organic matter. Agronomy monograph 9. In: Page A.L., Miller R.H., Keeney D.R. (eds) Methods of soil analysis, part 2, chemical and microbial properties. Madison, Wisconsin: Agronomy Society of America, 539, 1982.
  • 37. BREMNER J.M., MULVANEY C.S. Nitrogen-total. Agronomy monograph 9. In: Methods of soil analysis, part 2, chemical and microbial properties. Madison, Wisconsin: Agronomy Society of America, 595, 1982.
  • 38. VANCE E.D., BROOKES P.C., JENKINSON D.S. An extraction method for measuring microbial biomass C. Soil Biol. Biochem. 19 (6), 703, 1987.
  • 39. TUO D.F., XU M.X., ZHAO Y.G., GAO L.Q. Interactions between wind and water erosion change sediment yield and particle distribution under simulated conditions. J. Arid Land. 7 (5), 590, 2015.
  • 40. KEMPER W.D., CHEPIL W.S. Size distribution of aggregation. In: Black CA (eds) Methods of Soil Analysis. American Society of Agronomy, Madison W.I., 499, 1965.
  • 41. FILHO C.C., LOURENCO A., GUIMARAES F.M., FONSECA I.C.B. Aggregate stability under different soil management systems in a red latosol in the state of Parana, Brazil. Soil Till. Res. 65 (1), 45, 2002.
  • 42. LI L.Q., ZHANG X.H., ZHANG P.J., ZHENG J.F., PAN G.X. Variation of organic carbon and nitrogen in aggregate size fractions of a paddy soil under fertilisation practices from Tai Lake Region, China. J. Sci. Food Agr. 87 (6), 1052, 2007.
  • 43. YANG X.Y., LI P.R., ZHANG S.L., SUN B.H., CHEN X.P. Long-term-fertilization effects on soil organic carbon, physical properties, and wheat yield of a loess soil. J. Plant Nutr. Soil Sc. 174 (5), 775, 2011.
  • 44. LI C.H., LI Y., TANG L.S. The effects of long-term fertilization on the accumulation of organic carbon in the deep soil profile of an oasis farmland. Plant Soil, 369 (1-2), 645, 2013.
  • 45. MANZONI S., PORPORATO A. Soil carbon and nitrogen mineralization: Theory and models across scales. Soil Biol. Biochem. 41 (7), 1355, 2009.
  • 46. SIX J., ELLIOTT E.T., PAUSTIAN K. Aggregate and soil organic matter dynamics under conventional and no-tillage systems. Soil Sci. Soc. Am. J. 63 (5), 1350, 1999.
  • 47. AOYAMA M., ANGERS D.A., N’DAYEGAMIYE A. Particulate and mineral-associated organic matter in water-stable aggregates as affected by mineral fertilizer and manure applications. Can. J. Soil Sci. 79 (2), 295, 1999.
  • 48. NAYAK D.R., BABU Y.J., ADHYA T.K. Long-term application of compost influences microbial biomass and enzyme activities in a tropical Aeric Endoaquept planted to rice under flooded condition. Soil Biol. Biochem. 39 (8), 1897, 2007.
  • 49. BEDINI S., PELLEGRINO E., AVIO L., PELLEGRINI S., BAZZOFFI P., ARGESE E., GIOVANNETTI M. Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices. Soil Biol. Biochem. 41 (7), 1491, 2009.
  • 50. KALLENBACH C., GRANDY A.S. Controls over soil microbial biomass responses to carbon amendments in agricultural systems: A meta-analysis. Agr. Ecosyst Environ. 144 (1), 241, 2011.
  • 51. HUA K.K., ZHU B., WANG X.G., GUO X.S., WANG D.Z., GUO Z.B. Effect of long-term fertilization on soil aggregate-associated dissolved organic nitrogen on sloping cropland of purple soil. Plant Soil Environ. 60 (2), 51, 2014.
  • 52. TRESEDER K.K. Nitrogen additions and microbial biomass: A meta-analysis of ecosystem studies. Ecol. lett. 11 (10), 1111, 2008.
  • 53. KHAN S.A., MULVANEY R.L., ELLSWORTH T.R., BOAST C.W. The myth of nitrogen fertilization for soil carbon sequestration. J. Environ. Qual. 36 (6), 1821, 2007.
  • 54. PERFECT E., RASIAH V., KAY B.D. Fractal dimension of soil aggregate-size distributions calculated by number and mass. Soil Sci. Soc. Am. J. 56 (5), 1407, 1992.
  • 55. WANG X.D., LI M.H., LIU S.Z., LIU G.C. Fractal characteristics of soils under different land-use patterns in the arid and semiarid regions of the Tibetan Plateau, China. Geoderma. 134 (1-2), 56, 2006.
  • 56. XU G.C., LI Z.B., LI P. Fractal features of soil particle-size distribution and total soil nitrogen distribution in a typical watershed in the source area of the middle Dan River, China. Catena. 101, 17, 2013.
  • 57. ZHANG G.H., LIU G.B., WANG G.L., WANG Y.X. Effects of vegetation cover and rainfall intensity on sediment-bound nutrient loss, size composition and volume fractal dimension of sediment particles. Pedosphere. 21 (5), 676, 2011.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-1052a730-c719-47d4-9e43-349a42d0d7e5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.