PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 23 |

Tytuł artykułu

Essential genes of the macrophage response to Staphylococcus aureus exposure

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background: Although significant advances have been made in understanding the mechanisms of macrophage response to Staphylococcus aureus infection, the molecular details are still elusive. Identification of the essential genes and biological processes of macrophages that are specifically changed at different durations of S. aureus exposure is of great clinical significance. Methods: We aimed to identify the significantly changed genes and biological processes of S. aureus-exposed macrophages. We systematically analyzed the macrophage gene expression profile GSE 13670 database with 8 h, 24 h or 48 h S. aureus infection. The results were further confirmed by western blot and quantitative polymerase chain reaction (qPCR) analyses. Results: After 8 h of S. aureus infection, the expression of 624 genes was significantly changed. Six hundred thirteen differentially expressed genes (DEGs) were identified after 24 h of S. aureus infection. Two hundred fifty-three genes were significantly changed after 48 h of S. aureus infection. STAT1 was consistently up-regulated in these three treatments. TP53, JAK2, CEBPA, STAT3, MYC, CTNNB1 and PRKCA were only identified in the 8 h or 24 h S. aureus infection groups. CTNNB1 and PRKCA were for the first time identified as potential essential genes in S. aureus infection of macrophages. In the Gene Ontology (GO) term analysis, the defense response was shown to be the most significantly changed biological process among all processes; KEGG pathway analysis identified the JAK-STAT signaling pathway involved in early infection. Conclusions: Our systematic analysis identified unique gene expression profiles and specifically changed biological processes of the macrophage response to different S. aureus exposure times.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

23

Opis fizyczny

p.1-14,fig.,ref.

Twórcy

autor
  • Department of Clinical Laboratory, Liaocheng People’s Hospital, 67 West Dongchang Road, Liaocheng 252000, Shandong Province, People’s Republic of China
autor
  • Department of Clinical Laboratory, Liaocheng People’s Hospital, 67 West Dongchang Road, Liaocheng 252000, Shandong Province, People’s Republic of China
autor
  • Department of Clinical Laboratory, Liaocheng People’s Hospital, 67 West Dongchang Road, Liaocheng 252000, Shandong Province, People’s Republic of China
autor
  • Department of Clinical Laboratory, Liaocheng People’s Hospital, 67 West Dongchang Road, Liaocheng 252000, Shandong Province, People’s Republic of China
autor
  • Department of Clinical Laboratory, Liaocheng People’s Hospital, 67 West Dongchang Road, Liaocheng 252000, Shandong Province, People’s Republic of China
autor
  • Department of Clinical Laboratory, Liaocheng People’s Hospital, 67 West Dongchang Road, Liaocheng 252000, Shandong Province, People’s Republic of China

Bibliografia

  • 1. Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28:603–61. https://doi.org/ 10.1128/CMR.00134-14.
  • 2. Beth L, Noboru M, Virgin HW. Autophagy in immunity and inflammation. Nature. 2011;469:323–35.
  • 3. Maria Belén M, María Isabel C. Staphylococcus aureus promotes autophagy by decreasing intracellular cAMP levels. Autophagy. 2012;8:1865–7.
  • 4. von Eiff C, Peters G, Becker K. The small colony variant (SCV) concept—the role of staphylococcal SCVs in persistent infections. Injury. 2006;37:S26–33.
  • 5. Wertheim HF, et al. Risk and outcome of nosocomial Staphylococcus aureus bacteraemia in nasal carriers versus non-carriers. Lancet. 2004;364:703–5.
  • 6. Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3:23–35. https://doi.org/10.1038/nri978.
  • 7. Koziel J, et al. Phagocytosis of Staphylococcus aureus by macrophages exerts cytoprotective effects manifested by the upregulation of antiapoptotic factors. PLoS One. 2009;4:e5210.
  • 8. Gebru E, et al. The role of Janus kinase 2 (JAK2) activation in pneumococcal EstA protein-induced inflammatory response in RAW 264.7 macrophages. Microb Pathog. 2011;51:297–303.
  • 9. Wu J, Irizarry R, Macdonald J, Gentry J. Background adjustment using sequence information. R Package Version. 2005:2.
  • 10. Hahne F, Huber W, Gentleman R, Falcon S. Bioconductor case studies. (Springer Science & Business Media, 2010).
  • 11. De Groot P, Reiff C, Mayer C, Müller M. NuGO contributions to GenePattern. Genes Nutr. 2008;3:143–6.
  • 12. Tavazoie S, Hughes JD, Campbell MJ, Cho RJ, Church GM. Systematic determination of genetic network architecture. Nat Genet. 1999;22:281–5.
  • 13. Warnes GR, et al. gplots: various R programming tools for plotting data. R Package Version. 2009:2.
  • 14. Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–7.
  • 15. Prasad TK, et al. Human protein reference database—2009 update. Nucleic Acids Res. 2009;37:D767–72.
  • 16. Chatr-Aryamontri A, et al. The BioGRID interaction database: 2013 update. Nucleic Acids Res. 2013;41:D816–23.
  • 17. McDowall MD, Scott MS, Barton GJ. PIPs: human protein–protein interaction prediction database. Nucleic Acids Res. 2009;37:D651–6.
  • 18. Smoot ME, Ono K, Ruscheinski J, Wang P-L, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011;27:431–2.
  • 19. Ramana CV, Chatterjee-Kishore M, Nguyen H, Stark GR. Complex roles of Stat1 in regulating gene expression. Oncogene. 2000;19:2619–27. https://doi.org/10.1038/sj.onc.1203525.
  • 20. Suryawanshi A, Tadagavadi RK, Swafford D, Manicassamy S. Modulation of inflammatory responses by Wnt/beta-catenin signaling in dendritic cells: a novel immunotherapy target for autoimmunity and cancer. Front Immunol. 2016;7:460. https://doi.org/10.3389/fimmu.2016.00460.
  • 21. Sánchez-Espiridión B, et al. Immunohistochemical markers for tumor associated macrophages and survival in advanced classical Hodgkin’s lymphoma. Haematologica. 2012;97:1080–4.
  • 22. Leopold Wager CM, et al. STAT1 signaling within macrophages is required for antifungal activity against Cryptococcus neoformans. Infect Immun. 2015;83:4513–27. https://doi.org/10.1128/IAI.00935-15.
  • 23. Fu X-T, et al. Macrophage-secreted IL-8 induces epithelial-mesenchymal transition in hepatocellular carcinoma cells by activating the JAK2/STAT3/Snail pathway. Int J Oncol. 2015;46:587–96.
  • 24. Hirano T, Ishihara K, Hibi M. Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene. 2000;19:2548–56. https://doi.org/10.1038/sj.onc.1203551.
  • 25. Krejsgaard T, et al. Staphylococcal enterotoxins promote lymphoma-associated immune dysregulation by modulating benign and malignant T-cell interactions. Blood. 2014; https://doi.org/10.1182/blood-2014-2001-551184.
  • 26. Stodden G, et al. Loss of Cdh1 and Trp53 in the uterus induces chronic inflammation with modification of tumor microenvironment. Oncogene. 2015;34:2471–82.
  • 27. Hsu TY-T, et al. The spliceosome is a therapeutic vulnerability in MYC-driven cancer. Nature. 2015;525:384–8.
  • 28. Quintanilla-Martinez LIX. Is it only about MYC? How to approach the diagnosis of diffuse large B-cell lymphomas. Hematol Oncol. 2015;33:50–5.
  • 29. Kagita S, Uppalapati S, Gundeti S, Digumarti R. Correlation of C/EBPα expression with response and resistance to imatinib in chronic myeloid leukaemia. Jpn J Clin Oncol. 2015; https://doi.org/10.1093/jjco/hyv064.
  • 30. Cannella AP, et al. Antigen-specific acquired immunity in human brucellosis: implications for diagnosis, prognosis, and vaccine development. Front Cell Infect Microbiol. 2012;2:1. https://doi.org/10.3389/fcimb.2012.00001.
  • 31. Harpur A, Andres A, Ziemiecki A, Aston R, Wilks A. JAK2, a third member of the JAK family of protein tyrosine kinases. Oncogene. 1992;7:1347–53.
  • 32. Zhu F, Zhou Y, Jiang C, Zhang X. Role of JAK-STAT signaling in maturation of phagosomes containing Staphylococcus aureus. Sci Rep. 2015;5:14854.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-104022d1-4f97-4128-87d8-3daac27aac93
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.