PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 6 |

Tytuł artykułu

Can China achieve its CO2 emission mitigation target in 2030: a system dynamics perspective

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
To predict the feasibility of whether China can achieve an up to 65% of carbon emissions intensity (CEI) reduction goal from 2005 levels by 2030, we performed dynamic simulations and predictions of China’s CO₂ emissions at the national scale from a system dynamics perspective. More specifically, we developed a system dynamics model based on LMDI analysis to simulate and estimate CO₂ emissions under 10 different scenarios in China during 1991-2030. The result shows that China’s CEI will decrease by 67.86-84.63% in 2030 compared to the 2005 level, which means that China will be able to meet the emission reduction goal by 2030, and China’s CO₂ emissions will peak sometime between 2020 and 2025. In addition, the quantitative evidence suggests that transforming the energy structure will make a significant contribution to CO₂ emissions reduction. As the proportion of renewables increases, CO₂ emissions decrease in terms of both scale and peak value and peaks earlier. So, the findings also indicate that the optimization for energy structure by replacing fossil fuels (especially coal) with renewables at a suitable growth rate can promote the coordination between economic growth and CO₂ emissions mitigation.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

6

Opis fizyczny

p.2861-2871,fig.,ref.

Twórcy

autor
  • College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing, China
  • Research Centre for Soft Energy Science, Nanjing University of Aeronautics and Astronautics, Nanjing, China
autor
  • College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing, China
autor
  • School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
autor
  • College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing, China
  • Research Centre for Soft Energy Science, Nanjing University of Aeronautics and Astronautics, Nanjing, China
autor
  • College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing, China
  • Research Centre for Soft Energy Science, Nanjing University of Aeronautics and Astronautics, Nanjing, China

Bibliografia

  • 1. GREGG J.S., ANDRES R.J., MARLAND G. China: emissions pattern of the world leader in CO₂ emissions from fossil fuel consumption and cement production. Geophys. Res. Lett., 35 (8), 135, 2008.
  • 2. IPCC (Intergovernmental Panel on Climate Change). The IPCC Fifth Assessment Report 2014. http://www.ipcc.ch/(accessed on 15.03.15).
  • 3. ZHAO X., DU D. Forecasting carbon dioxide emissions. J. of Environ. Management, 160, 39, 2015.
  • 4. WEN J. Full text of Chinese premier's address at Copenhagen Climate Change Summit. http://news.xinhuanet.com/english/2009-12/18/content_12668022.htm (accessed on 18/12/2009)
  • 5. SU W. Enhanced actions on climate change: China’s intended nationally determined contributions. http://www4. unfccc.int/submissions/INDC/Published%20Documents/China/1/China's%20INDC%20%20on%2030%20June%202015.pdf (accessed on 30/06/2015).
  • 6. WANG G., CHEN X., ZHANG Z. Influencing factors of energy-related CO₂ emissions in China: A decomposition analysis. Sustainability, 7 (10), 14408, 2015.
  • 7. FENG Y., CHEN S., ZHANG L. System dynamics modeling for urban energy consumption and CO₂ emissions: a case study of Beijing, China. Ecological Modelling, 252, 44, 2013.
  • 8. ROBALINO-LÓPEZ A., MENA-NIETO A., GARCÍA-RAMOS J.E., GOLPE AA. Studying the relationship between economic growth, CO₂ emissions and the environmental Kuznets curve in Venezuela (1980-2025). Renewable and Sustainable Energy Reviews, 41, 602, 2015.
  • 9. NARAYAN P.K., NARAYAN S. Carbon dioxide emissions and economic growth: panel data evidence from developing countries. Energy Policy, 38 (1), 661, 2010.
  • 10. JAUNKY V.C. The CO₂ emissions-income nexus: evidence from rich countries. Energy Policy, 39 (3), 1228, 2011.
  • 11. ESTEVE V., TAMARIT C. Threshold cointegration and nonlinear adjustment between CO₂ and income: the environmental Kuznets curve in Spain, 1857-2007. Energy Economics, 34 (6), 2148, 2012.
  • 12. ESTEVE V., TAMARIT C. Is there and the environmental Kuznets curve for Spain? Fresh evidence from old data. Economic Modelling, 29 (6), 2696, 2012.
  • 13. SHAHBAZ M., LEAN H.H., SHABBIR M.S. Environmental Kuznets curve hypothesis in Pakistan: cointegration and Granger causality. Renew. & Sustain. Energy Rev., 16 (5), 2947, 2012.
  • 14. SHAHBAZ M., MUTASCU M., AZIM P. Environmental Kuznets curve in Romania and the role of energy consumption. Renewable and Sustainable Energy Reviews, 18, 165, 2013.
  • 15. COWAN W.N., CHANG T., INGLESI-LOTZ R., GUPTA R. The nexus of electricity consumption, economic growth and CO₂ emissions in the BRICS countries. Energy Policy, 66, 359, 2014.
  • 16. WEN L., LI Y. The causality relationships between energyrelated CO₂ emissions and its influencing factors with linear and nonlinear granger causality tests. Pol. J. Environ. Stud., 26 (3), 1313, 2017.
  • 17. IBRAHIM M.H., LAW S.H. Social capital and CO₂ emission--output relations: a panel analysis. Renewable and Sustainable Energy Reviews, 29, 528, 2014.
  • 18. 18LIANG S., ZHANG T. What is driving CO₂ emissions in a typical manufacturing center of South China? The case of Jiangsu Province. Energy Policy, 39 (11), 7078, 2011.
  • 19. WANG Y., LIANG S. Carbon dioxide mitigation target of China in 2020 and key economic sectors. Energy Policy, 58 (5), 90, 2013.
  • 20. SU B., ANG B.W. Multiplicative decomposition of aggregate carbon intensity change using input-output analysis. Appl. Energy, 154, 13, 2015.
  • 21. MI Z., WEI Y., WANG B., MENG J., LIU Z., SHAN Y., LIU J., GUAN D. Socioeconomic impact assessment of China's CO₂ emissions peak prior to 2030. J. of Cleaner Production, 142, 2227, 2017.
  • 22. ZHANG Y., LEI Y. Research on the carbon emissions of Beijing residents based on the input-output model. Pol. J. Environ. Stud., 26 (5), 2397, 2017.
  • 23. AUFFHAMMER M., STEINHAUSER R. Forecasting the path of U.S. CO₂ emissions using state-level information. Review of Economics & Statistics, 94 (1), 172, 2012.
  • 24. GUAN D., HUBACEK K., WEBER C.L., PETERS G.P., REINER D.M. The drivers of Chinese CO₂ emissions from 1980 to 2030. Global Environmental Change, 18 (4), 626, 2008.
  • 25. ZHANG M., Mu H.L., NING Y.D., SONG Y.C. Decomposition of energy-related CO₂ emission over 1991-2006 in China. Ecological Economics, 68, 2122, 2009.
  • 26. XU S.C., HE Z.X., LONG R.Y. Factors that influence carbon emissions due to energy consumption in China: Decomposition analysis using LMDI. Applied Energy, 127, 182, 2014.
  • 27. KARMELLOS M., KOPIDOU D., DIAKOULAKI D. A decomposition analysis of the driving factors of CO₂ emissions from the power sector in the European Union countries. Energy, 94, 680, 2016.
  • 28. DU K.R., LIN B.Q. Understanding the rapid growth of China’s energy consumption: a comprehensive decomposition framework. Energy, 90, 570, 2015.
  • 29. LI A., ZHANG A., ZHOU Y., YAO X. Decomposition analysis of factors affecting carbon dioxide emissions across provinces in China. Journal of Cleaner Production, 141, 1428, 2017.
  • 30. BIAN Y., HE P., XU H. Estimation of potential energy saving and carbon dioxide emission reduction in China based on an extended non-radial DEA approach. Energy Policy, 63, 962, 2013.
  • 31. ZHANG N., WEI X. Dynamic total factor carbon emissions performance changes in the Chinese transportation industry. Appl. Energy, 146, 409, 2015.
  • 32. HALICIOGLU F. An econometric study of CO₂ emissions, energy consumption, income and foreign trade in Turkey. Energy Policy, 37, 1156, 2009.
  • 33. ALAM M.J., BEGUM I.A., BUYSSE J., RAHMAN S., HUYLENBROECK G.V. Dynamic modeling of causal relationship between energy consumption, CO₂ emissions and economic growth in India. Renewable & Sustainable Energy Reviews, 15 (6), 3243, 2010.
  • 34. CICEA C., MARINESCU C., POPA I., DOBRIN C. Environmental efficiency of investments in renewable energy: Comparative analysis at macroeconomic level. Renew. Sustain. Energy Rev., 30 (2), 555, 2014.
  • 35. ZHENG T.L., ZHU J.L., WANG S.P., FANG J.Y. When will China achieve its carbon dioxide emission peak? National Science Review, 3 (1), 8, 2016.
  • 36. ROBALINO-LÓPEZ A., MENA-NIETO A., GARCÍA-RAMOS J.E. System dynamics modeling for renewable energy and CO₂ emissions: A case study of Ecuador. Energy for Sustain. Dev., 20, 11, 2014.
  • 37. ROBALINO-LÓPEZ A., GARCÍA-RAMOS J.E., GOLPE A.A., MENA-NIETO A. System dynamics modelling and the environmental Kuznets curve in Ecuador (1980-2025). Energy Policy, 67, 923, 2014.
  • 38. FORRESTER J.W. Industrial dynamics. MIT Press: Cambridge, MA, U.S., 1961.
  • 39. STERMAN J.D. Business dynamics: systems thinking and modeling for a complex world. McGraw-Hill: New York, U.S., 2000.
  • 40. WALTERS J.P, ARCHER D.W., SASSENRATH G.F., HENDRICKSON J.R., HANSON J.D., HALLORAN J.M., VADAS P., ALARCON V.J. Exploring agricultural production systems and their fundamental components with system dynamics modeling. Ecological Modelling, 333, 51, 2016.
  • 41. FORRESTER J.W. System dynamics and the lessons of 35 years. In: A systems-based approach to policymaking, De Greene Kenyon B, Eds., Springer: Boston, MA, U.S., 199, 1993.
  • 42. ANAND S., DAHIYA R.P.; TALYAN V., VRAT P. Investigations of methane emissions from rice cultivation in Indian context. Environment International, 31 (4), 469, 2005.
  • 43. DACE E., MUIZNIECE I., BLUMBERG A., KACZALA F. Searching for solutions to mitigate greenhouse gas emissions by agricultural policy decisions – Application of system dynamics modeling for the case of Latvia. Science of The Total Environment, 527-528, 80, 2015.
  • 44. ANAND S., VRAT P., DAHIYA R.P. Application of a system dynamics approach for assessment and mitigation of CO₂ emissions from the cement industry. J. of Environ. Management, 79 (4), 383, 2006.
  • 45. KUNSCH P., SPRINGAEL J. Simulation with system dynamics and fuzzy reasoning of a tax policy to reduce CO₂ emissions in the residential sector. Eur. J. of Operational Research, 185(3), 1285, 2008.
  • 46. LIU X., MAO G., REN J., LI R.Y., GUO J., ZHANG L. How might China achieve its 2020 emissions target? A scenario analysis of energy consumption and CO₂ emissions using the system dynamics model. Journal of Cleaner Production, 103, 401, 2015.
  • 47. LIU L., ZONG H., ZHAO E., CHEN C., WANG J. Can China realize its carbon emission reduction goal in 2020: From the perspective of thermal power development. Applied Energy, 124, 199, 2014.
  • 48. HE J. An analysis of China’s CO₂ emission peaking target and pathways. Advances in Climate Change Research, 5 (4), 155, 2014.
  • 49. NIU S., LIU Y., DING Y., QU W. China ׳s energy systems transformation and emissions peak. Renewable and Sustainable Energy Reviews, 58, 782, 2016.
  • 50. ZHAO X., CAI Q., ZHANG S., LUO K. The substitution of wind power for coal-fired power to realize China’s CO₂ emissions reduction targets in 2020 and 2030. Energy, 120, 164, 2017.
  • 51. XU L., CHEN N., CHEN Z. Will China make a difference in its carbon intensity reduction targets by 2020 and 2030? Applied Energy, 203, 874, 2017.
  • 52. YANG L., WANG J., SHI J. Can China meet its 2020 economic growth and carbon emissions reduction targets? Journal of Cleaner Production, 142, 993, 2017.
  • 53. LI F., XU Z., MA H. Can China achieve its CO₂ emissions peak by 2030? Ecol. Indicators, 84, 337, 2018.
  • 54. ANG B.W., LIU F.L. A new energy decomposition method: perfect in decomposition and consistent in aggregation. Energy, 26 (6), 537, 2001.
  • 55. ZHAO M., TAN L.R., ZHANG W.G., JI M.H., LIU Y., YU L.Z. Decomposing the influencing factors of industrial carbon emissions in Shanghai using the LMDI method. Energy, 35 (6), 2505, 2010.
  • 56. LIU L.C., WANG J.N., WU G., WEI Y.M. China’s regional carbon emissions change over 1997-2007. International Journal of Energy and Environment, 1 (1), 161, 2010.
  • 57. ZHOU J., GUANG T., DU S. Decomposing the decoupling of carbon emissions and economic growth in China’s power industry. Pol. J. Environ. Stud., 26 (5), 2397, 2017.
  • 58. ANSARI N., SEIFI A. A system dynamics model for analyzing energy consumption and CO₂ emission in Iranian cement industry under various production and export scenarios. Energy Policy, 58, 75, 2013.
  • 59. NBSC (National Bureau of Statistics of China). China Energy Statistical Yearbook 2014. China Statistical Press: Beijing, China, 2015 [In Chinese].
  • 60. NBSC (National Bureau of Statistics of China). China Statistical Yearbook 2014. China Statistical Press, Beijing, China, 2015 [In Chinese].
  • 61. IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. 2006.
  • 62. THE WORLD BANK and THE DEVELOPMENT RESEARCH CENTER OF THE STATE COUNCIL, THE P.R. CHINA. China 2030: Building a Modern, Harmonious, and Creative Society. 2012.
  • 63. UNITED NATIONS, DEPARTMENT OF ECONOMIC and SOCIAL AFFAIRS, POPULATION DIVISION (2015). World Population Prospects: The 2015 Revision. Key Findings and Advance Tables. Working Paper No. ESA/P/WP.241. 2015.
  • 64. CHINA ENERGY ASSOCIATION. China Energy Outlook 2030. http://www.cpecc.net/art/2016/3/4/ art_175_13430. html (accessed on 04/03/2016), 2016. [In Chinese].
  • 65. LIU Z., GUAN D., MOORE S., Zhang Q. Steps to China’s carbon peak. Nature, 522 (7556), 279, 2015.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-10277c20-6203-46f0-a229-85b8ac9b2950
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.