Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 30 | 6 |

Tytuł artykułu

Inhibition of ribonuclease and protease activities in germinating rice seeds exposed to nickel

Warianty tytułu

Języki publikacji



When the seeds of two rice cvs. Malviya-36 and Pant-12 were germinated up to 120 h in the presence of 200 and 400 μM NiSO4, a significant reduction in the germination of seeds occurred. Seeds germinating in the presence of 400 μM NiSO4 showed about 12–20% decline in germination percent, about 20–53% decline in lengths and about 8–34% decline in fresh weights of roots and shoots at 120 h of germination. Ni2+ exposure of germinating seeds resulted in apparent increased levels of RNA, soluble proteins, and free amino acids in endosperms as well as embryo axes. A 400 μM Ni2 + treatment led to about 58–101% increase in the level of soluble proteins and about 39–107% increase in the level of free amino acids in embryo axes at 96 h of germination. Activities of ribonuclease and protease declined significantly with increasing levels of Ni2+ treatment. Isoenzyme profile of RNase as revealed by activity staining indicated decline in the intensities of 3–4 preexisting enzyme isoforms in embryo axes of both the rice cultivars and disappearance of one of the two isoforms in endosperms of cv. Pant-12 due to 400 μM Ni2+ treatment. Results suggest that the presence of high level of Ni2+ in the medium of germinating rice seeds serves as a stress factor resulting in decreased hydrolysis as well as delayed mobilization of endospermic RNA and protein reserves and causing imbalance in the level of biomolecules like RNA, proteins, and amino acids in growing embryo axes. These events would ultimately contribute to decreased germination of rice seeds in high Ni2+ containing environment.

Słowa kluczowe








Opis fizyczny



  • Department of Biochemistry, Banaras Hindu University, 221005 Varanasi, India
  • Department of Biochemistry, Banaras Hindu University, 221005 Varanasi, India


  • Ahsan N, Lee DG, Lee SH, Kang KY, Lee JJ, Kim PJ et al (2007) Excess copper induced physiological and proteomic changes in germinating rice seeds. Chemosphere 67:1182–1193. doi: 10.1016/j.chemosphere.2006.10.075
  • Alia, Saradhi PP (1991) Proline accumulation under heavy metal stress. J Plant Physiol 138:554–558
  • Balestrasse KB, Benavides MP, Gallego SM, Tomaro ML (2003) Effect of cadmium stress on nitrogen metabolism in nodules and roots of soybean plants. Funct Plant Biol 30:57–64. doi: 10.1071/FP02074
  • Bewley JD, Black M (1994) Seeds: physiology of development and germination, 2nd edn. Plenum Press, New York, pp 293–310
  • Booker FL (2004) Influence of ozone on ribonuclease activity in wheat (Triticum aestivum) leaves. Physiol Plant 120:249–255. doi:10.1111/j.0031-9317.2004.0238.x
  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3
  • Chang S-C, Gallie DR (1997) RNase activity decreases following a heat shock in wheat leaves and correlates with its posttranslational modification. Plant Physiol 113:1253–1263
  • Chen CT, Chen LM, Lin CC, Kao CH (2001) Regulation of proline accumulation in detached rice leaves exposed to excess copper. Plant Sci 160:283–290. doi:10.1016/S0168-9452(00)00393-9
  • Choi SB, Wang C, Muench DG, Ozawa K, Franceschi VR, Wu Y et al (2000) Messenger RNA targeting of rice seed storage proteins to specific ER subdomains. Nature 407(6805):765–767. doi: 10.1038/35037633
  • Davis BJ (1964) Disc electrophoresis II. Method and application to human serum protein. Ann N Y Acad Sci 121:404–427. doi:10.1111/j.1749-6632.1964.tb14213.x
  • Dubey RS (1982) Biochemical changes in germinating rice seeds under saline stress. Biochem Physiol Pflanz 177:523–535
  • Dubey RS, Rani M (1989) Salinity induced accumulation of free amino acids in germinating rice seeds differing in salt tolerance. J Agron Crop Sci 163:236–247. doi:10.1111/j.1439-037X. 1989.tb00763.x
  • Espen L, Pirovano L, Cocucci SM (1997) Effect of Ni2+ during the early phases of radish (Raphnus sativus) seed germination. Environ Exp Bot 38:187–197. doi:10.1016/S0098-8472(97)00011-7
  • Fincher GB (1989) Molecular and cellular biology association with endosperm mobilization in germination cereal grains. Annu Rev Plant Physiol Plant Mol Biol 40:305–346. doi:10.1146/ annurev.pp. 40.060189.001513
  • Gabbrielli R, Pandolfini T, Espen L, Palandri MR (1999) Growth, peroxidase activity and cytological modifications in Pisum sativum seedlings exposed to Ni2+ toxicity. J Plant Physiol 155:639–645
  • Gallardo K, Job C, Groot SPC, Puype M, Demol H, Vandekerckhove J, Job D (2001) Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol 126:835–848
  • Gianazza E, Wait R, Sozzi A, Regondi S, Saco D, Labra M et al (2007) Growth and protein profile changes in Lepidium sativum L. plantlets exposed to cadmium. Environ Exp Bot 59:179–187. doi:10.1016/j.envexpbot.2005.12.005
  • Gomes-Filho E, Lima CRFM, Ene´as-Filho J, Gondim LA, Prisco JT (1999) Purification and properties of a ribonuclease from cowpea cotyledons. Biol Plant 42:525–532. doi:10.1023/A: 1002602712392
  • Grilli I, Meletti P, Spanó C (2002) Ribonucleases during ripining and after-ripening in Triticum durum embryos. J Plant Physiol 159:935–937. doi:10.1078/0176-1617-00568
  • Gupta R, Shetrapal KS, Jain U, Soni D (2001) Effect of copper and nickel on seed germination and seedling growth of Raphanus sativus Var. Pusa Chetki. Indian J Environ Sci 5(1):93–96
  • Herman EM, Larkins BA (1999) Protein storage bodies and vacuoles. Plant Cell 11:601–613
  • Jha AB, Dubey RS (2005) Effect of arsenic on behaviour of enzymes of sugar metabolism in germinating rice seeds. Acta Physiol Plant 27(3B):341–348. doi:10.1007/s11738-005-0010-x
  • Krupa Z, Siedlecka A, Maksymiec W, Baszyn˜ski T (1993) In vivo response of photosynthetic apparatus of Phaseolus vulgaris L. to nickel toxicity. J Plant Physiol 142:664–668
  • Kuriakose SV, Prasad MNV (2008) Cadmium stress affects seed germination and seedling growth in Sorghum bicolor (L.) Moench by changing the activities of hydrolyzing enzymes. Plant Growth Regul 54:143–156. doi:10.1007/s10725-007-9237-4
  • Larcher W (1995) The utilization of mineral elements. In: Larcher W (ed) Physiological plant ecology, 3rd edn. Springer, Berlin, pp 167–213
  • Leon V, Rabier J, Notonier R, Barthele´my R, Moreau X, Bouraïma-Madjébi S et al (2005) Effects of three nickel salts on germinating seeds of Grevillea exul var. rubiginosa, an endemic serpentine proteaceae. Ann Bot (Lond) 95:609–618. doi: 10.1093/aob/mci066
  • Li W, Khan MA, Yamaguchi S, Kamiya Y (2005) Effects of heavy metals on seed germination and early seedling growth of Arabidopsis thaliana. Plant Growth Regul 46:45–50. doi: 10.1007/s10725-005-6324-2
  • Lin Y, Kao C (2006) Effects of excess nickel on starch mobilization in germinating rice grains. J Plant Nutr 29:1405–1412. doi: 10.1080/01904160600830225
  • Lowry OH, Rosenbrough JJ, Farr AL, Randall RJ (1951) Estimation of protein with the folin phenol reagent. J Biol Chem 193:265
  • Maheshwari R, Dubey RS (2007) Nickel toxicity inhibits ribonuclease and protease activities in rice seedlings: protective effects of proline. Plant Growth Regul 51:231–243. doi:10.1007/s10725-006-9163-x
  • Mihoub A, Chaoui A, Ferjani EE (2005) Biochemical change associated with cadmium and copper stress in germinating pea seeds (Pisum sativum L.). C R Biol 328:33–41
  • Mishra S, Dubey RS (2006) Inhibition of ribonuclease and protease activities in arsenic exposed rice seedlings: Role of proline as enzyme protectant. J Plant Physiol 163:927–936. doi:10.1016/j.jplph.2005.08.003
  • Mittal R, Dubey RS (1991) Influence of salinity on ribonuclease activity and status of nucleic acids in rice seedlings differing in salt tolerance. Plant Physiol Biochem 18:57–64
  • Nagoor S, Vyas AV (1999) Physiological and bio-chemical responses of cereal seedlings to graded levels of heavy metals. III. Effects of copper on protein metabolism in wheat seedlings. J Environ Biol 20:125–129
  • Osborne DJ (1993) Function of DNA synthesis and DNA repair in the survival of embryos during early germination and in dormancy. Seed Sci Res 3:43–53
  • Palma JM, Sandalio LM, Corpas FJ, Romero-Puertas MC, McCarthy I, del Río LA (2002) Plant protease, protein degradation, and oxidative stress: role of peroxisomes. Plant Physiol Biochem 40:521–530. doi:10.1016/S0981-9428(02)01404-3
  • Parida BK, Chhibba IM, Nayyer VK (2003) Influence of nickelcontaminated soils on fenugreek (Trigonella corniculata L.) growth and mineral composition. Sci Hortic (Amsterdam) 98:113–119. doi:10.1016/S0304-4238(02)00208-X
  • Rao KVM, Sresty TVS (2000) Antioxidative parameters in the seedlings of pigeon pea [Cajanus cajan (L.) Millspaugh] in response to Zn and Ni stresses. Plant Sci 157:113–128. doi: 10.1016/S0168-9452(00)00273-9
  • Rosen H (1959) A modified ninhydrin colorimetric analysis for amino acids. Arch Biochem Biophys 67:10–15. doi:10.1016/0003-9861(57)90241-2
  • Rout GR, Samantaray S, Das P (2000) Effects of chromium and nickel on germination and growth in tolerant and non-tolerant populations of Echinochloa colona (L.) link. Chemosphere 40:855–859. doi:10.1016/S0045-6535(99)00303-3
  • Schneider WC (1957) Determination of nucleic acids by pentose analysis. Methods Enzymol 3:680–684. doi:10.1016/S0076-6879(57)03442-4
  • Shah K, Dubey RS (1995) Cadmium induced changes on germination, RNA level and ribonuclease activity in rice seeds. Plant Physiol Biochem N Delhi 22:101–107
  • Shah K, Dubey RS (1998) Cadmium elevates level of protein, amino acids and alters the activity of proteolytic enzymes in germinating rice seeds. Acta Physiol Plant 20:189–196. doi:10.1007/s11738-998-0013-5
  • Spanó C, Crosatti C, Pacchini R, Meletti P, Grilli I (2002) Ribonucleases during cold acclimation in winter and spring wheats. Plant Sci 162:809–815. doi:10.1016/S0168-9452(02)00026-2
  • Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206. doi:10.1111/j.1365-3040.1990.tb01304.x
  • Volkin E, Cohn WE (1954) Estimation of nucleic acid. In: Click G (ed) Methods of biochemical analysis. Interscience, New York, pp 287–306
  • Yamauchi D (2003) Regulation of gene expression of a cysteine proteinase, EP-C1, by a VIVIPAROUS1-like factor from common bean. Plant Cell Physiol 44:649–652. doi:10.1093/pcp/pcg076
  • Welch RM (1995) Micronutrient nutrition of plants. Crit Rev Plant Sci 14:49–82. doi:10.1080/713608066
  • Wilson CM (1967) Purification of a corn ribonuclease. J Biol Chem 242:2260–2263
  • Zhang N, Jones B (1999) Polymorphism of aspartic proteinases in resting and germinating barley seeds. Cereal Chem 76:134–138. doi:10.1094/CCHEM.1999.76.1.134


Rekord w opracowaniu

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.