PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 29 | 3 |

Tytuł artykułu

A review of past and present summer primary production processes in the Ross Sea in relation to changing ecosystems

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
We analyse primary production processes during austral summer 1996 and 2001 in different environmental conditions such as ice-free waters and extensive ice-covered areas. Spatio-temporal distribution of phytoplankton biomass and functional groups along with photosynthetic parameters are presented. Production vs irradiance (PvsE) experiments were performed using 14C incubations at several stations and three or four different depths to define the eco-physiology of phytoplankton communities.The results of the oceanographic campaign conducted in ice-free waters of the Ross Sea (summer 1996) emphasize that these ecosystems are characterized by high nutrient low chlorophyll (HNLC) conditions due to limiting factors (eg Fe). Conversely, the results of the oceanographic cruise in extensively packice-covered areas (summer 2001) indicate that the average phytoplankton biomass (estimated from Chla) was about three times the values recorded in ice-free conditions, but the primary production was relatively lower. In fact, in situ primary production and PvsE experiments over few days show that high primary production values occurred in most of the area, but only within the first five meters of the water column and the melting pack ice. Notwithstanding some high values of phytoplankton biomass during the 2001 campaign, water column stability, similar irradiance levels along the water column, photosynthetic capacity was suppressed in deeper layers, indicating a low carrying capacity of the pelagic ecosystem due to iron limitation, as shown by low values of the photo-chemical efficiency of photosystem II (PSII), variable fluorescence and maximal fluorescence ratio (Fv/Fm). In contrast with a very high variability in phytoplankton biomass at several temporal and spatial scales, photosynthetic parameters (PBmax, a, Ek) varied within narrow ranges. Relevant changes in phytoplankton abundance and species composition are reported in this study although the environmental factors that drive these changes in primary production processes and prevalence of principal functional groups of phytoplankton communities compared to the past (1996 and 2001) are still unknown. The effect of these changes on the carrying capacity of Ross Sea ecosystems, carbon export and the potentially new asset of the food web will need to be determined.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

29

Numer

3

Opis fizyczny

p.75-85,fig.,ref.

Twórcy

autor
  • Department of Biology, University of Naples “Federico II”, Naples, Italy
autor
  • Stazione Zoologica Anton Dohrn, Naples, Italy
autor
  • Department of Biology, University of Naples “Federico II”, Naples, Italy
autor
  • Stazione Zoologica Anton Dohrn, Naples, Italy
autor
  • Stazione Zoologica Anton Dohrn, Naples, Italy

Bibliografia

  • Ainley D.G., Ballard G., Jones R.M., Jongsomjit D., Pierce S.D., Smith W.O. & Veloz S., 2015, Trophic cascades in the western Ross Sea, Antarctica: revisited, Marine Ecology Progress Series, 534: 1-16.
  • Alderkamp A.-C., Kulk G., Buma A.G.J., Visser R.J.W., Van Dijken G.L., Mills M.M. & Arrigo K.R., 2012, The effect of iron limitation on the photophysiology of Phaeocystis Antarctica (Prymnesiophyceae) and Fragilariopsis cylindrus (Bacillariophyceae) under dynamic irradiance, Journal of Phycology, 48(1): 45.
  • Arrigo K.R., Worthen D.L., Schnell A., Lizotte M.P., 1998, Primary production in Southern Ocean waters, Journal of Geophysical Research, 103 (15): 587-600.
  • Arrigo K.R., Robinson D.H., Worthen D.L., Dunbar R.B., DiTullio G.R., van Woert M., Lizotte M.P., 1999, Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean, Science, 283: 365–367.
  • Arrigo K.R., DiTullio G.R., Dunbar R.B., Robinson D.H., VanWoert M., Worthen D.L, Lizotte M.P., 2000, Phytoplankton taxonomic variability in nutrient utilization and primary production in the Ross Sea, Journal of Geophysical Research, 105: 8827–8846.
  • Arrigo K.R., Van Dijken G., Long M., 2008, Coastal Southern Ocean: A strong anthropogenic CO2 sink, Geophysical Research Letters, 35: L21602. doi: 10.1029/2008GL035624.
  • Arrigo K.R., van Dijken G.L., Strong A.L., 2015, Environmental controls of marine productivity hot spots around Antarctica, Journal of Geophysical Research Oceans, 120(8): 5545-5565.
  • Babin M., Morel A., Gagnon R., 1994, An incubator designed for extensive and sensitive measurements of phytoplankton photosynthetic parameters, Limnology and Oceanography, 39: 694–702.
  • Bertrand E.M., Saito M.A., Rose J.M., Riesselman C.R., Lohan M.C., Noble A.E., Lee P.A., DiTullio G.R., 2007, Vitamin B12 and iron co-limitation of phytoplankton growth in the Ross Sea, Limnology and Oceanography, 52: 1079-1093.
  • Brunet C. & Mangoni O., 2010, Determinazione quali-quantitativa dei pigmenti fitoplanctonici mediante HPLC, [in:] Metodologie di studio del Plancton marino, G. Socal, I. Buttino, M. Cabrini, O. Mangoni, A. Penna, C. Totti, (eds), ISPRA: 56, 379-385.
  • Budillon G., Castagno P., Aliani S., Spezie G., Padman L., 2011, Thermohaline variability and Antarctic bottom water formation at the Ross Sea shelf break, Deep-Sea Research Part I, 1002–1018.
  • Carrada G.C., Mangoni O., Russo G.F., Saggiomo V., 2000, Phytoplankton size-fractionated biomasses in the Ross Sea. Spatial and temporal evolution during the austral spring. [in:] Ross Sea Ecology, Italian Antarctic expeditions (1987-1995). F.M. Faranda, L. Guglielmo, A. Ianora, (eds), Springer Berlin: 205-216.
  • Comiso J.C., Kwok R., Martin S. & Gordon A.L., 2011, Variability and trends in sea ice extent and ice production in the Ross Sea. Journal of Geophysical Research. 116: C4.
  • Comiso J.C, Gersten R.A, Stock L.V., Turner J., Perez G.J. & Cho K., 2017, Positive Trend in the Antarctic Sea Ice Cover and Associated Changes in Surface Temperature, American Meteorological Society, 30(6): 2151-2267.
  • Constable A.J., Melbourne-Thomas J., Corney S.P., Arrigo K.R., Barbraud C., Barnes D.K., Bindoff N.L., Boyd P.W., Brandt A., Costa D.P., Davidson A.T., Ducklow H.W., Emmerson L., Fukuchi M., Gutt J., Hindell M.A., Hofmann E.E., Hosie G.W., Iida T., Jacob S., Johnston N.M., Kawaguchi S., Kokubun N., Koubbi P., Lea M.A., Makhado A., Massom R.A., Meiners K., Meredith M.P., Murphy E.J., Nicol S., Reid K., Richerson K., Riddle M.J., Rintoul S.R., Smith W.O. Jr, Southwell C., Stark J.S., Sumner M., Swadling K.M., Takahashi K.T., Trathan P.N., Welsford D.C., Weimerskirch H., Westwood K.J., Wienecke B.C., Wolf-Gladrow D., Wright S.W., Xavier J.C., Ziegler P., 2014, Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota, Global Change Biology, 20: 3004-3025.
  • Croft M.T., Lawrence A.D., Raux-Deery E., Warren M.J., Smith A.G., 2005, Algae acquire vitamin B12 through a symbiotic relationship with bacteria, Nature, 438: 90–93.
  • DiTullio G.R. & Smith W.O. Jr, 1996, Spatial patterns in phytoplankton biomass and pigment distributions in the Ross Sea, Journal of Geophysical Research, 101: 18467–18477.
  • DiTullio G.R., Grebmeier J., Arrigo K.R., Lizotte M.P., Robinson D.H., Leventer A., Barry J.P, VanWoert M.L. & Dunbar R.B., 2000, Rapid and early export of Phaeocystis antarctica blooms in the Ross Sea, Antarctica, Nature, 404: 595-598.
  • Ducklow H.W., Schofield O., Vernet M., Stammerjohn S., & Erickson M., 2012, Multiscale control of bacterial production by phytoplankton dynamics and sea ice along the western Antarctic Peninsula: A regional and decadal investigation, Journal of Marine Systems, 99: 26–39.
  • Feng Y., Hare C.E., Rose J.M., Handy S.M., DiTullio G.R., Lee P.A., Smith W.O. Jr, Peloquin J., Tozzi S., Sun J., Zhang Y., Dunbar R.B., Long M.C., Sohst B., Lohan M., Hutchins D.A., 2010, Interactive effects of iron, irradiance and CO2 on Ross Sea phytoplankton, Deep-Sea Research Part I, 57: 368-383.
  • Fragoso G.M. & Smith W.O., 2012, Influence of hydrography on phytoplankton distribution in the Amundsen and Ross Seas, Antarctica, Journal of Marine Systems, 89(1): 19-29.
  • Fitch D.T. & Moore J.K., 2007, Wind speed influence on phytoplankton bloom dynamics in the Southern Ocean marginal ice zone, Journal of Geophysical Research Oceans, 112: C08006, doi:10.1029/2006jc004061.
  • Geibert W., Assmy P., Bakker D.C.E., Hanfland C., Hoppema M., Pichevin L.E., Schröder M., Schwarz J.N., Stimac I., Usbeck R. & Webb A., 2010, High productivity in an ice melting hot spot at the eastern boundary of the Weddell Gyre, Global Biogeochemical Cycles, 24 (3). GB3007, 01.09.2010.
  • Guglielmo L., Carrada G.C., Catalano G., Cozzi S., Dell'Anno A., Fabiano M., Granata A., Lazzara L., Lorenzelli R., Manganaro A., Mangoni O., Misic C., Modigh M., Pusceddu A., Saggiomo V., 2004, Biogeochemistry and algal communities in the annual sea ice at Terra Nova Bay (Ross Sea, Antarctica), Chemistry and Ecology, 20 (1): 43-55.
  • Hatta M., Measures C.I., Lam P.J., Ohnemus D.C., Auro M.E., Grand M.M., et al., 2017, The relative roles of modified circumpolar deep water and benthic sources in supplying iron to the recurrent phytoplankton blooms above Pennell and Mawson Banks, Ross Sea, Antarctica, Journal of Marine Systems, 166: 61-72.
  • Holm-Hansen O., Lorenzen C.J., Holmes R.W., Strickland J.D.H., 1965, Fluorometric determination of chlorophyll, Journal du Conseil/Conseil Permanent International pour l’Exploration de la Mer, 30: 3-15.
  • Jacobs S., 2004, Bottom water production and its links with the thermohaline circulation, Antarctic Science, 16: 427–437.
  • Kohut J.T., Kustka A.B., Hiscock M., Lam P.J., Measures C., Milligan A, et al., 2017, Mesoscale variability of the summer bloom over the northern Ross Sea shelf: A tale of two banks, Journal of Marine Systems, 166: 50-60.
  • Kurtz N.T. & Markus T, 2012, Satellite observations of Antarctic sea ice thickness and volume, Journal of Geophysical Research Oceans, 117: C08025, doi:10.1029/2012jc008141.
  • Legendre L., Demers S., Yentsch C.M., Yentsch C.S., 1983, The 14C method: patterns ofdark CO2 fixation and DCMU correction to replace the dark bottle, Limnology and Oceanography, 28: 996–1003.
  • Mackey M.D., Mackey D.J., Higgins H.W., Wright S.W., 1996, CHEMTAX-a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton, Marine Ecology Progress Series, 144: 265-283.
  • Mangoni O., Modigh M., Conversano F., Carrada G.C. & Saggiomo V., 2004, Effects of summer ice coverage on phytoplankton assemblages in the Ross Sea, Antarctica, Deep-Sea Research Part I, 51(11): 1601-1617.
  • Mangoni O., Saggiomo V., Bolinesi F., Margiotta F., Budillon G., Cotroneo Y., Misic C., Paola Rivaro P., Saggiomo M., 2017, Phytoplankton blooms during austral summer in the Ross Sea, Antarctica: driving factors and trophic implications, PLoS ONE,10.1371/journal.pone.0176033.
  • Mantoura R.F.C. & Llewellyn C.A., 1983, The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high-performance liquid chromatography, Analytica Chimica Acta, 151: 297-314.
  • Massom R.A. & Stammerjohn S.E., 2010, Antarctic sea ice change and variability – Physical and ecological implications, Polar Science, 4(2): 149-186.
  • Misic C., Covazzi Harriague A., Mangoni O., Cotroneo Y., Aulicino G., Castagno P., 2017, Different responses of the trophic features of particulate organic matter to summer constraints in the Ross Sea, Journal of Marine Systems, 166: 132-143.
  • Ohshima K.I., Nihashi S. & Iwamoto K., 2016, Global view of sea-ice production in polynyas and its linkage to dense/bottom water formation, Geoscience Letter, 3:13. doi: 10.1186/s40562-016-0045-4.
  • Oza S.R., Singh R.K.K., Srivastava A., Dash M.K., Das I.M.L. & Vyas N.K., 2011, Inter-annual variations observed in spring and summer Antarctic sea ice extent in recent decade, Mausam, 62: 633–640.
  • Parkhill J.P., Maillet G., & Cullen J.J., 2001, Fluorescence-based maximal quantum yield for PSII as a diagnostic of nutrient stress, Journal of Phycology, 17: 517–529.
  • Parkinson C.L. & Cavalieri D.J., 2012, Antarctic sea ice variability and trends 1979–2010, Cryosphere, 6: 871–880.
  • Peloquin J.A. & Smith W.O. Jr, 2007, Phytoplankton blooms in the Ross Sea, Antarctica: interannual variability in magnitude, temporal patterns, and composition, Journal of Geophysical Research, 112: C08013. doi: 10.1029/2006JC003816.
  • Platt T., Gallegos C.L., Harrison W.G., 1980, Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton, Journal of Marine Research, 38: 687–701.
  • Rivaro P., Ianni C., Langone L., Ori C., Aulicino G., Cotroneo Y., et al., 2017, Physical and biological forcing on the mesoscale variability of the carbonate system in the Ross Sea (Antarctica) during the summer season 2014, Journal of Marine Systems, 166: 144-158.
  • Saggiomo V., Carrada G.C., Mangoni O., Ribera d’Alcalà M., Russo A., 1998, Spatial and temporal variability of size-fractionated biomass and primary production in the Ross Sea (Antarctica) during austral spring and summer, Journal of Marine Systems, 17:115-127.
  • Saggiomo V., Carrada G.C., Mangoni O., Marino D., Ribera d’Alcalà M., 2000, Physiological and ecological aspects of primary production in the Ross Sea, [in:] Ross Sea Ecology, Italian Antarctic expeditions (1987-1995). F.M. Faranda, L. Guglielmo, A. Ianora, (eds), Springer Berlin: 247–258.
  • Saggiomo V., Catalano G., Mangoni O., Budillon G., Carrada G.C., 2002, Primary production processes in ice-free waters of the Ross Sea (Antarctica) during the austral summer 1996, Deep-Sea Research Part II, 49: 1787–801.
  • Saggiomo M., Poulin M., Mangoni O., Lazzara L., De Stefano M., Sarno D., et al., 2017, Spring-time dynamics of diatom communities in landfast and underlying platelet ice in Terra Nova Bay, Ross Sea, Antarctica, Journal of Marine Systems, 166: 26-36.
  • Saino N. & Guglielmo L., 2000, ROSSMZE expedition: distribution and biomass of bird and mammals in the western Ross Sea. [in:] Ross Sea Ecology, Italian Antarctic expeditions (1987-1995). F.M. Faranda, L. Guglielmo, A. Ianora, (eds), Springer Berlin: 469-478.
  • Sedwick P.N. & DiTullio G. R., 1997, Regulation of algal blooms in Antarctic shelf waters by the release of iron from melting sea ice, Geophysical Research Letter, 24: 2515–2518.
  • Sedwick P.N., Marsay C.M., Sohst B.M., Aguilar‐Islas A.M., Lohan M.C., Long M.C., Arrigo K.R., Dunbar R.B., Saito M.A., Smith W.O. & DiTullio G.R., 2011, Early season depletion of dissolved iron in the Ross Sea polynya: Implications for iron dynamics on the Antarctic continental shelf, Journal of Geophysical Research-Oceans, 116: C12.
  • Smith W.O. Jr & Nelson D.M., 1985, Phytoplankton bloom produced by a receding ice edge in the Ross Sea: spatial coherence with the density field, Science, 227: 163–166.
  • Smith W.O. Jr & Gordon L.I., 1997, Hyperproductivity of the Ross Sea (Antarctica) polynya during austral spring, Geophysical Research Letters, 24: 233–236.
  • Smith W.O Jr, Shields A.R., Peloquin J.A., Catalano G., Tozzi S, Dinniman M.S., et al., 2006, Interannual variations in nutrients, net community production, and biogeochemical cycles in the Ross Sea, Deep-Sea Res II, 53: 815-833.
  • Smith W.O. Jr, Tozzi S., DiTullio G.R., Dinnimand M., Mangoni O., Modigh M., Saggiomo V., 2010, Phytoplankton photosynthetic pigments in the Ross Sea: Patterns and relationships among functional groups, Journal of Marine Systems, 82: 177-185.
  • Smith W.O. Jr & Jones R.M., 2014, Vertical mixing, critical depths, and phytoplankton growth in the Ross Sea, ICES Journal of Marine Science, 72(6): 1952-1960. doi: 10.1093/icesjms/fsu234.
  • Smith W.O. Jr, Ainley D.G., Arrigo K.R., Dinniman M.S., 2014; The Oceanography and Ecology of the Ross Sea, Annual Review of Marine Science, 6: 469-87.
  • Tamura T., Ohshima K.I., Nihashi S., 2008, Mapping of sea ice production for Antarctic coastal polynyas, Geophysical Research Letter, 35: L07606
  • Taylor M.H., Losch M. & Bracher A., 2013, On the drivers of phytoplankton blooms in the Antarctic marginal ice zone: A modeling approach, Journal of Geophysical Research Oceans, 118(1): 63-75.
  • Turner J.J., Hosking S., Bracegirdle T.J., Marshall G.J., Phillips T., 2015, Recent changes in Antarctic Sea Ice, Philosophical Transactions of the Royal Society A Math. Phys. Eng. Sci., 373: 20140163, doi:10.1098/rsta.2014.0163.
  • Turner J. & Comiso J., 2017, Solve Antarctica’s sea-ice puzzle, Nature, 547: 275-277.
  • Wang S. & Moore J.K., 2011, Incorporating Phaeocystis into a Southern Ocean ecosystem model, Journal of Geophysical Research, 116: C01019. doi:10.1029/2009jc005817.
  • Wang S., Bailey D., Lindsay K., Moore J. K. & Holland M., 2014, Impact of sea ice on the marine iron cycle and phytoplankton productivity, Biogeosciences, 11: 4713–4731.
  • Wright S.W., van den Enden R.L., Pearce I., Davidson A.T., Scott F.J., Westwood K.J. 2010, Phytoplankton community structure and stocks in the Southern Ocean (30-80°E) determined by CHEMTAX analysis determined by HPLC pigment signatures, Deep-Sea Research Part II, 57: 758-778.
  • Xavier J.C., Brandt A., Ropert-Coudert Y., Badhe R., Gutt J., Havermans C., Jones C., Costa E.S, Karin Lochte K., Schloss I.R., Mahlon C. Kennicutt II M.C. & Sutherland W.J., 2016, Future Challenges in Southern Ocean Ecology Research, Frontiers in Marine, Science, doi.org/10.3389/fmars.2016.00094

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-0fd80480-1bbc-4a06-abe8-4a20372676ba
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.