Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 20 | 4 |
Tytuł artykułu

High intensity LED light in lettuce seed physiology (Lactuca sativa L.)

Treść / Zawartość
Warianty tytułu
Zastosowanie światła LED wysokiej intensywności w fizjologii nasion sałaty (Lactuca sativa L.)
Języki publikacji
In order to improve the physiology of plants, this research evaluated the effect of high-intensity LED light (red, blue and green) on the following variables: germination (PG), hypocotyl length (HL), fresh (FW) and dry (DW) weight, in three types of lettuce seed (White Boston, Romana and Black Simpson). Exposure times with colour light were 12, 6 and 3h, with a complement of time for treatments with 6 and 3h of white LED light. We used a completely randomised design with four replications of 30 seeds. Treatments with green and red light to 12h had increases above 90% in HL against the control for the three varieties. The blue light treatment (3h) increased 23% in FW White Boston variety and the red light (3h) increased 14% the DW variable in Roman variety, compared to the control. In this study, treatments with colour light presented results above the control; however, a treatment with a single type of light is not optimal to improve plant physiology. The physiological responses evaluated showed variation related to the genotype of seed and to the time of exposure to high-intensity LED light, so this type of light is a viable option for improving the physiology of plants.
W celu uzyskania poprawy fizjologii roślin, w badaniach dokonano oceny wpływu światła LED wysokiej intensywności (czerwone, niebieskie i zielone) na następujące zmienne: kiełkowanie (PG), długość hipokotylu (HL), świeżej (FW) i suchej (DW) masy nasion trzech odmian sałaty (White Boston, Romana i Black Simpson). Czasy naświetlania światłem barwnym wynosiły 12, 6 and 3 h, z uzupełniającym doświetlaniem wariantów z czasami 6 i 3 h białym światłem LED. Zastosowano kompletnie zrandomizowany układ doświadczenia, w czterech powtórzeniach po 30 nasion. Warianty ze światłem zielonym i czerwonym oraz czasami naświetlania do 12 h wykazały ponad 90% wzrost HL w stosunku do kontroli dla trzech odmian. W wariancie ze światłem niebieskim (3 h) uzyskano 23% wzrost parametru FW u odmiany White Boston, a w wariancie ze światłem czerwonym (3 h) 14% wzrost zmiennej DW u odmiany Roman, w porównaniu do kontroli. W badaniach zastosowanie naświetlania światłem barwnym dało lepsze wyniki niż w przypadku kontroli, jednak naświetlanie jednym rodzajem światła nie jest optymalne dla uzyskania poprawy fizjologii roślin. Oceniane reakcje fizjologiczne zmieniały się w zależności od genotypu nasion i czasu naświetlania światłem LED wysokiej intensywności, tak więc zastosowanie tego typu światła stanowi możliwą opcję w poprawie fizjologii roślin.
Opis fizyczny
  • Professional Unit 'Adolfo Lopez Mateos', National Polytechnic Institute, SEPI-ESIME "Zacatenco", Col.Lindavista, Mexico D.F., C.P.07738 Mexico, Mexico
  • Professional Unit 'Adolfo Lopez Mateos', National Polytechnic Institute, SEPI-ESIME "Zacatenco", Col.Lindavista, Mexico D.F., C.P.07738 Mexico, Mexico
  • Professional Unit 'Adolfo Lopez Mateos', National Polytechnic Institute, SEPI-ESIME "Zacatenco", Col.Lindavista, Mexico D.F., C.P.07738 Mexico, Mexico
  • Professional Unit 'Adolfo Lopez Mateos', National Polytechnic Institute, SEPI-ESIME "Zacatenco", Col.Lindavista, Mexico D.F., C.P.07738 Mexico, Mexico
  • Professional Unit 'Adolfo Lopez Mateos', National Polytechnic Institute, SEPI-ESIME "Zacatenco", Col.Lindavista, Mexico D.F., C.P.07738 Mexico, Mexico
  • Professional Unit 'Adolfo Lopez Mateos', National Polytechnic Institute, SEPI-ESIME "Zacatenco", Col.Lindavista, Mexico D.F., C.P.07738 Mexico, Mexico
  • Ainsworth E.A.,Ort D.R., 2010. How Do We Improve Crop Production in a Warming World? Plant Physiology, 154, 526-530.
  • Astolfi S., Marianello C., Grego S. and Bellarosa R., 2012. Preliminary Investigation of LED Lighting as Growth Light for Seedlings from Different Tree Species in Growth Chambers.Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 40, 31-38.
  • Banerjee R., Schleicher E., Meier S., Viana R. M., Pokorny R., Ahmad M., Bittl R. and Batschauer A., 2007. The signaling state of Arabidopsis cryptochrome 2 contains flavinsemiquinone. Journal of biological chemistry, 282, 14916-14922.
  • Bourget C.M., 2008. An Introduction to Light-emitting Diodes. Hortscience, 43, 1944-1946.
  • Chakraborty S., Newton A.C., 2011. Plant Pathology, 60, 2-14.
  • Chen M., Chory J., Fankhauser C., 2004. Light signal transduction in higher plants. Annual Review of Genetics, 38, 87-117.
  • Fillipo R.V.H., Cano G.H.B. and Chaves O.J.A., 2010. Aplicaciones de iluminación con leds (in Spanish). Scientia et Technica, 45, 13-18.
  • Folta K.M., Maruhnich S.A., 2007. Green light: a signal to slow down or stop. Journal of Experimental Botany, 58, 3099-3111.
  • Folta K.M., Shea K.C., 2008. Light as a Growth Regulator: Controlling Plant Biology with Narrow- bandwidth Solid-state Lighting Systems. Hortscience, 43, 1957-1964.
  • Folta K.M., Spalding E.P., 2001. Unexpected roles for cryptochrome 2 and phototropin revealed by high-resolution analysis of blue light-mediated hypocotyl growth inhibition. The PlantJournal, 26, 471-478.
  • Fu W., Li P., Wu Y., 2012. Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce. Scientia Horticulturae, 135, 45-51.
  • Graham-Rowe D., 2011. Beyond food versus fuel. Nature, 474, S6-S8.
  • Gupta S.D., Jatothu B., 2013. Fundamentals and applications of light-emitting diodes (LEDs) in in vitro plant growth and morphogenesis. Plant Biotechnology Reports, 7, 211-220.
  • Hernández A.C., Dominguez P.A., Cruz O.A., Ivanov R., Carballo C.A., Zepeda B.R., 2010. Laser in agriculture. Int. Agrophysics, 24, 407-422.
  • Hirai T., Amaki W.,Watanabe H., 2006. Action of blue or red monochromatic light on stem internodal growth depends on plant species. Acta Horticulturae, 711, 345-350.
  • Hogewoning S.W., Trouwborst G., Engbers G.J., Harbinson J., van Ieperen W., Ruijsch J., van Kooten O., Schapendonk A.H.C.M., Pot C.S., 2007. Plant physiological acclimation to irradiation by light-emitting diodes (leds). Acta Horticulturae, 761, 183-191.
  • Hogewoning S.W., Trouwborst G., Maljaars H., Poorter H., van Ieperen W., Harbinson J., 2010.
  • Blue light dose – responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. Journal of ExperimentalBotany, 61, 3107-3117.
  • Hussein J.H., Abdulla I.S., Oda M.Y., 2011. Effect of Accelerated Aging Conditions on Viability of Sunflower (Helianthus annus L.) Seeds. Euphrates Journal of Agriculture Science, 3, 1-9.
  • Ilieva I., Ivanova T., Naydenov Y., Dandolov I. and Stefanov D., 2010. Plant experiments with lightemitting diode module in Svet space greenhouse. Advances in Space Research, 46, 840-845.
  • Jha P., Norsworthy J.K., Riley M.B., Bridges W. Jr., 2010. Annual changes in temperature and light requirements for germination of palmer amaranth (Amaranthus palmeri) seeds retrieved from soil. Weed Science, 58, 426-432.
  • Johkan M., Shoji K., Goto F., Hahida S., Yoshihara T., 2012. Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa. Environmental and Experimental Botany, 75, 128-133.
  • Kim H.H., Goins G.D., Wheeler R.M., Sager J.C., 2004. Green light suplementation for enhanced lettuce growth under red- and blue-light-emitting diodes. Hortscience, 39, 1617-1622.
  • Kim S.J., Hahn E.J., Heo J.W., Paek K.Y., 2004. Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Scientia Horticulturae, 101, 143-151.
  • Kobayashi K., Amore T., Lazaro M., 2013. Light-Emitting diodes (LEDs) for Miniature Hydroponic Lettuce. Optics and Photonics Journal, 3, 74-77.
  • Kozai T., 2007. Propagation, grafting and transplant production in closed systems with artificial lighting for commercialisation in Japan. Propagation of Ornamental Plants, 7, 145-149.
  • Li H., Xu Z., Tang C., 2010. Effect of light-emitting diodes on growth and morphogenesis of upland cotton (Gossypiumhirsutum L.) plantlets in vitro. Plant Cell Tiss Organ Cult, 103, 155-163.
  • Lin C., 2000. Plant blue-light receptors. Trends in Plant Science, 5, 337-342.
  • Lin K.H., Huang M.Y, Huang W.D., Hsu M.H., Yang Z.W., Yang C.M., 2013. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Scientia Horticulturae, 150, 86-91.
  • Liu W., 2012. Light Environmental Management for Artificial Protected Horticulture. Agrotechnology, 1, 1-4.
  • Massa G.D., Kim H.H., Wheeler R.M., Mitchell C.A., 2008. Plant productivity in response to LED lighting. Hortscience, 43, 1951-1956.
  • Mathews S., 2006. Phytochrome-mediated development in land plants: red light sensing evolves to meet the challenges of changing light environments. Molecular Ecology, 15, 3483–3503.
  • McCoshum S., Kiss J.Z., 2011. Green light affects blue-light-based phototropism in hypocotyls of Arabidopsis thaliana. Journal of the Torrey Botanical Society, 138, 409-417.
  • Morrow R.C., 2008. LED lighting in horticulture. Hortscience, 43, 1947-1950.
  • Nishimura T., Ohyama K., Goto E., Inagaki N., 2009. Concentrations of perillaldehyde, limonene, and anthocyanin of Perilla plants as affected by light quality under controlled environments.Scientia Horticulturae, 122, 134-137.
  • Ohashi-Kaneko K., Takase M., Kon N., Fujiwara K., Kurata K., 2007. Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna. Environmental Control in Biology, 45, 189-198.
  • Park Y.G., Park J.E., Hwang S.J., Jeong B.R., 2012. Light Source and CO2 Concentration Affect
  • Growth and Anthocyanin Content of Lettuce under Controlled Environment. Horticulture, Environment, and Biotechnology, 53, 460-466.
  • Samuolienė G., Brazaityté A., Urbonaviciuté A., Sabajeviené G., Duchovskis P., 2010. The effect of red and blue light component on the growth and development of frigo strawberries. Zemdirbyste-Agriculture, 97, 99-104.
  • Samuolienė G., Sirtautas R., Brazaitytė A., Sakalauskaitė J., Sakalauskienė S., Duchovskis P., 2011. The impact of red and blue light-emitting diode illumination on radish physiological indices. Central European Journal of Biology, 6, 821-828.
  • Shin K.S., Murthy H.N., Heo J.W., Hahn E.J. and Paek K.Y., 2008. The effect of light quality on the growth and development of in vitro cultured Doritaenopsis plants. Acta Physiologiae Plantarum,30, 339-343.
  • Shoji K., Johkan M., Goto F., Hashida S.N., Yoshihara T., 2010. Blue Light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. Hortscience, 45, 1809-1814.
  • Stutte G.W., 2009. Light-emitting Diodes for Manipulating the Phytochrome Apparatus. Hortscience, 44, 231-234.
  • Xu H.I., Xu Q., Li F., Feng Y., Qin F., Fang W., 2012. Applications of xerophytophysiology in plant production-LED blue light as a stimulus improved the tomato crop. Scientia Horticulturae,148, 190-196.
  • Yeh N., Chung J.P., 2009. High-brightness LEDs-Energy efficient lighting sources and their potential in indoor plant cultivation. Renewable and Sustainable Energy Reviews, 13, 2175-2180.
  • Zhang L., Wong M.H., 2007. Environmental mercury contamination in China: Sources and impacts. Environment International, 33, 108-121.
  • Zhang T., Folta K.M., 2012. Green light signaling and adaptive response. Plant Signaling & Behavior, 7, 1-4.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.