PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1996 | 436 |

Tytuł artykułu

Method to estimate water permeability functions of moderately wet soils with help of heat pipe technique

Treść / Zawartość

Warianty tytułu

PL
Metoda określania funkcji przepuszczalności umiarkowanie wilgotnych gleb przy pomocy techniki cieplnej rury

Języki publikacji

EN

Abstrakty

EN
Water permeability of moderately wet soils, i.e., their unsaturated hydraulic conductivity and water diffusivity are seldom measured directly, yet are often needed by numerical models to simulate transport processes. These functions can be evaluated from steady state water content and temperature profiles in heat pipes - closed columns of uniformly moistened soil subjected to temperature gradient. For such systems Sw = DT/D(θ) = -dθ/dT where Sw is the thermogradient coefficient, DT is the thermal water diffusivity, D(θ) is isothermal water diffusivity and dθ/dT is the rate of change of water content with temperature deduced from steady state profiles of θ(x) and T(x), x - is the distance from one of column ends. DT varies in a relatively narrow range and can be assumed as a constant.Then D(θ) can be estimated as DTSw where Sw is measured in various locations along soil columns. Using water retention data, the steady water content profile can be procedure for estimating D(θ) can then be applied to estimate hydraulic conductivity, K(θ). Soil columns ranging in length from 5 to 10 cm, exposed to thermal gradients of l°C/cm for periods as short as 7 d, at initial suction values ranging from 1 to 1.5 MPa, can be used to estimate D and K with uncertainties of factor of five or less in the suction range from 0.03 to 3 Mpa.
PL
Zaproponowano metodę określania przepuszczalności hydraulicznej i dyfuzyjności wodnej gleby na podstawie profili ustalonej zawartości wody i temperatury w cieplnych rurach - zamkniętych kolumnach z równomiernie zwilżoną glebą poddaną gradientowi temperatury.

Wydawca

-

Rocznik

Tom

436

Opis fizyczny

p.49-55,fig.,ref.

Twórcy

autor
  • Agrophysical Research Institute, Russian Academy of Agricultural Sciences, Grazhdansky 14, St.Petersburg, 195220, Russia
autor
  • Pacific Northwest Laboratory, Richland, WA, 99352, USA
autor
  • Pacific Northwest Laboratory, Richland, WA, 99352, USA
autor
  • Pacific Northwest Laboratory, Richland, WA, 99352, USA

Bibliografia

  • 1. Aria L. M, Farrel D. A., Blake G. R.: A field study of soil water depletion patterns in presence of growing soybean roots: I. Determination of hydraulic properties of the soil. Soil Sci. Soc. Am. Proc., 39, 424 - 430, 1975.
  • 2. Black T .A., Gardner W. R., Thurtell G. W.: The prediction of evaporation, drainage and water storage for a bare soil. Soil Sci. Soc. Am. Proc., 33, 655 - 660, 1969.
  • 3. Brooks R. H., Corey A. T.: Hydraulic properties of porous media. Hydrol. Pap. no 3. Colorado State Univ., Ft. Collins, 1984.
  • 4. Bruce R. R., Klute A.: The measurement of soil-water diffusivity. Soil Sci. Soc. Am. Proc., 20, 458 - 462, 1956.
  • 5. Burdine N. T.: Relative permeability calculation from the size distribution. Petrol. Trans. Am. Inst. Min. Metali. Pet. Eng., 198, 71 - 78, 1953.
  • 6. Campbell G. S.: A simple method for determining unsaturated conductivity from water retention data. Soil Sci., 117, 311 - 314, 1971.
  • 7. Campbell G. S.: Soil Physics with BASIC. Elsevier, Amsterdam, 1985.
  • 8. Childs E. C., Collis-George N.: The permeability of porous materials. R. Soc. London, Proc., A 201, 392 - 405, 1950.
  • 9. Fayer M. J., Rockhold M. L., Campbell M. D.: Hydrologic modeling of protective barriers: Comparison of field data and simulation results. Soil Sci. Soc. Am. J„ 56, 690 - 700, 1992.
  • 10. Gee G. W.: Water Movement in Soils as Influenced by Temperature Gradients. Ph. D. diss. Washington State Univ., Pull. (Diss. Abstr., 66 - 13560), 1966.
  • 11. Globus A. M.: Physics of Non-isothermal Soil Water Transfer (in Russian). Gidrometeoizdat, Leningrad, 1983.
  • 12. Jackson R. D.: Water vapour diffusion in relatively dry soil: III. Steady state experiments. Soil Sci. Soc. Am. Proc., 28, 467 - 470, 1964.
  • 13. Jury W. A., Letcy J.: Water vapour movement in soil: Reconciliation of theory and experiment. Soil Sci. Soc. Am. J., 43, 823 - 827, 1979.
  • 14. Luikov A.V .: On theory of water migration in soil. Sov. Soil Sci., 9, 562 - 570, 1951.
  • 15. Millington R. J., Quirk J. K.: Permeability of porous solids. Trans. Faraday Soc., 57, 1200 - 1206, 1961.
  • 16. Mualem Y., Dagan G.: Hydraulic conductivity of soils: Unified approach to the statistical models. Soil Sci. Soc. Am. J., 42, 392 - 395, 1978.
  • 17. Philip J. R., de Vries D. A.: Water movement in porous materials under temperature gradients. Trans. Am. Geophys. Union, 1957.
  • 18. Ragab R., Cooper J. D.: Variability of unsaturated zone water transport parameters: Implications for hydrological modelling. Predicted vs. in situ measurement and evaluation of methods. J. Hydrol. (Amsterdam), 148, 133 - 147, 1993.
  • 19. Stephens D. B.: A comparison of calculated and measured unsaturated hydraulic conductivity of two uniform soils in New Mexico. In: Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils (Eds. M. Th. van Genuchten et al.). Riverside, CA, 11-13 Oct. 1989. Univ. of California, Riverside, 1992.
  • 20. Taylor S. A., J. W. Cary: Linear equations of the simultaneous flow of water and energy in continuous soil system. Soil Sci. Soc. Am. Proc., 28, 167 - 172, 1964.
  • 21. White M. D., Lenhard R. J, Perkins W. A., Robertson K. R.: Arid-ID engineering simulator design document. PNL-8448, Pacific Northwest Lab., Richland, WA, 1992.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-0f4079eb-9e3d-40d3-b86a-a0a76e8dd01a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.