Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 03 |

Tytuł artykułu

Removal of chromium by biosorption method (chitosan)


Treść / Zawartość

Warianty tytułu

Języki publikacji



Discharge of metal containing effluents into water has been a cause of major concern. Traditional treatment methods are proving to be ineffective and expensive. Chitosan was studied as a potential biosorbent due to its positive charge and relatively low cost. The study involves evaluating the metal binding performance of chitosan in a Polymer Enhanced Diafiltration (PEDF) system which uses an ultra filtration membrane to retain the chitosan which, in turn, binds the metal, thereby preventing passage into the permeate stream. Conditions for binding such as pH, concentration of polymer and chromium were studied. Optimal performance was obtained when the system was operated at pH values lower than the pKa of chitosan i.e. 6.3. Using 6 g/L chitosan at pH 4.0, chromium concentration was reduced to less than 1mg/L from a feed concentration of 20 mg/L. Equilibrium dialysis experiments were done to study the kinetics of binding and the uptake of metal per gram of polymer. Rheological measurements demonstrated that in the presence of 1-100 mM chromate, chitosan was found to be slightly shear thickening at low concentrations such as 4 g/L and 6 g/L whereas it was slightly shear thinning at higher concentrations like 12 g/L and 20 g/L This suggests that neutralization of chromium anions is due to the interaction of multiple chitosan molecules. This result is consistent with the relatively stiff nature of the polysaccharide. Overall, this study suggests that some modification of the native polymer would be required to improve uptake and make it an industrially workable process.

Słowa kluczowe






Opis fizyczny



  • Department of Chemical Engineering, Kankeshwari Institute of Technology, Jamnagar, Gujarat, India
  • Department of Chemical Engineering, Kankeshwari Institute of Technology, Jamnagar, Gujarat, India


  • [1] Forstner U. (1983). Metal pollution in the aquatic environment. 2nd edition. Springer-Verlag, New York.
  • [2] Saifuddin M. Nomanbhay, Kumaran Palanisamy, Electronic Journal of Biotechnology 8(1) (2005).
  • [3] Dantas T. N., Dantas Neto, A. A., Moura M. C. P., Barros Neto E. L., de Paiya Telemaco E., Langmuir 17 (2001) 4256-4260.
  • [4] Sag A., Aktay Y., Process Biochemistry 36 (2000) 157-173.
  • [5] Rojas G., Silva J., Flores J. A., Rodriguez A., Ly M., Maldonado H., Separation and Purification Technology 44 (2005) 31-36.
  • [6] Booker S. M., Pellerin C., Health Perspectives 108 (2000) 402-407.
  • [7] Armienta-Hernandez M. A., Rodriguez-Castillo R., Environmental Health Perspectives 103 (1995) 1-8.
  • [8] Lee M-Y., Hong K-J., Shin-Ya Y., Kajiuchi T., Journal of Applied Polymer Science 96 (2005) 44-50.
  • [9] Udaybhaskar P., Iyengar L., Prabhakar Rao A. V. S., Journal of Applied Polymer Science 39 (1990) 739-747.
  • [10] Palmer C. D., Wittbrodt P. R., Environmental Health Perspectives 92 (1991) 25-40.
  • [11] Katz S. A., Environmental Health Perspectives 92 (1991) 13-16.
  • [12] Shupack S. I., Environmental Health Perspectives 92 (1991) 7-11.
  • [13] EPA, 2000, Risk Characterization Handbook, Science Policy Council, U.S. Environmental Protection Agency, Washington, DC 20460.
  • [14] Niu H., Volesky B. Hydrometallurgy 71 (2003) 209-215.
  • [15] Rhazi M., Desbrières J., Tolaimate A., Rinaudo M., Vottero P., Alagui A., Polymer 43(77) (20002) 1267-1276.
  • [16] Guibal E., Separation and Purification Technology 38 (2004) 43-74.
  • [17] Mark S. S., Crusberg T. C., DaCunha C. M., Di Iorio A. A. Biotechnological Progress 22 (2006) 523-531.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.