Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 2 |

Tytuł artykułu

HMs induced changes on growth, antioxidant enzyme’s activity, gas exchange parameters and protein structures in sasa kongosanensis f. aureo – striatus

Warianty tytułu

Języki publikacji



Nowadays, the contaminations generated by anthropogenic activities have had damaging effects on the life cycle of plants, particularly on the plants living in the vicinity of urban areas that are more associated with the life of people. Bamboo, as a local plant, is one of the most widely used plants in China. So, a pot experiment was conducted to investigate the effects of three HMs (Cu, Pb, and Zn) in four different concentrations (0 (for control), 500 mg/kg, 1000 mg/kg, and 200 mg/kg), with complete randomized design (CRD) by five replications for each treatment to measure the antioxidant enzymes, lipid per oxidation (LP), soluble protein (SP), gas exchange parameters, and morphological indexes in Sasa kongosanensis f. aureo – striatus. The results indicated that the antioxidant responses had an arc-shaped trend with various alterations in which POD and CAT first increase with low concentration of HMs (500 mg/kg) and then decrease with the increase of heavy metal (1000 mg/kg and 2000 mg/kg). Additionally, measuring of MDA content and soluble protein illustrated that MDA content and soluble protein increase with excess of HMs in different levels, and also the excess of HMs significantly decreases the photosynthesis properties. Moreover, the results obtained by morphological indices showed that low concentration of HMs increases both percentage of shoot length and percentage of emerge plants at all three kinds of HMs, but observe a downward trend with excess of heavy metal in 1000 mg/kg and 2000 mg/kg. Overall, in “Sasa kongosanensis f. aureo – striatus, results indicated that low concentration of HMs (500 mg/kg) can help the plant growth, while excess of HMs (1000-2000 mg/kg) alleviates the plant growth. On the other hand, Pb revealed the lowest antioxidant activity that leads to most membrane damage and eventually showed the lowest plant growth among the cases that HMs were tested, while Zn showed the most increasing plant growth in low concentration.

Słowa kluczowe








Opis fizyczny



  • Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
  • College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
  • Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
  • Bamboo Research Institute, Nanjing Forestry University, Nanjing, 210037, China


  • 1. AYDINALP C., MARINOVA S. The effects of heavy metals on seed germination and plant growth on alfalfa plant (Medicago Sativa).Bulg. J. Agric .15 (4), 347, 2009.
  • 2. VIDAKOVIC-CIFREK Z., TKALEC M., SIKIC S., TOLIC S., LEPEDUS H., PEVALEK-KOZLINA B. Growth and photosynthetic responses of Lemna minor L. exposed to cadmium in combination with zinc or copper .Arh Hig Rada Toksikol. 66 (2), 141, 2015.
  • 3. LU K., YANG X., SHEN J., ROBINSON B., HUANG H., LIU D., BOLANE N., PEIB J., WANG H. Effect of bamboo and rice straw bio chars on the bioavailability of Cd, Cu, Pb and Zn to Sedum plumbizincicola. Agr. Ecosyst Environ. 191, 124, 2014.
  • 4. Hall J.L. Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot. 53, 1, 2002.
  • 5. SRIVASTAVA S., MISHRA S., TRIPATHI R.D., DWIVEDI S., GUPTA D.K. Copper-induced oxidative stress and responses of antioxidants and phytochelatins in Hydrilla verticillata (L.f.) Royle. Aquat Toxicol. 80 (4), 405, 2006.
  • 6. LUKATKIN A., EGOROVA I., MICHAILOVA I., MALEC P., STRZALKA K. Effect of copper on pro- and antoxidative reactions in radish (Raphanus sativus L.) in vitro and in vivo. J Trace Elem Med Biol. 28 (1), 80, 2014.
  • 7. Dai H.P., Shan C.J., Zhao H., Li J.C., Jia G.L., Jiang H., Wu S.Q., Wang Q. The difference in antioxidant capacity of four alfalfa cultivars in response to Zn. Ecotoxicol Environ Saf. 114, 312, 2015.
  • 8. KABALA K., JANICKA-RUSSAK M., KLOBUS G. Different responses of tonoplast proton pumps in cucumber roots to cadmium and copper. J Plant Physiol. 167, (16), 1328, 2010.
  • 9. SUN B.Y., KAN S.H., ZHANG Y.Z., DENG S.H., WU J., YUAN H., QI H., YANG G., LI L., ZHANG X.H., XIAO H., WANG Y.J., PENG H., Li Y.W. certain antioxidant enzymes and lipid peroxidation of radish (Raphanus sativus L.) as early warning biomarkers of soil copper exposure. J Hazard Mater. 183 (1-3), 833, 2010.
  • 10. KARIMI P., KHAVARI-NEJAD R.A., NIKNAM V., GHAHREMANINEJAD F., NAJAFI F. The effects of excess copper on antioxidative Enzymes, Lipid Peroxidation, Proline, Chlorophyll, and Concentration of Mn, Fe, and Cu in Astragalus neo-mobayenii .The Scientific World Journal. 6, 615670, 2012.
  • 11. CVJETKO P., TOLIC S., SIKIC S., BALEN B., TKALEC M., VIDAKOVIC-CIFREK Z., PAVLICA M. Effect OF Copper on the toxicity and genotoxicity of Cadmium in DUCKWEED (Lemna Minor L.). Arh Hig Rada Toksikol. 61 (3), 287, 2010.
  • 12. OKAMURA H., TANAKA Y., KONISHI M., KASHIWAGI H. Illustrated Horticultural Bamboo species in japan. HAATO limited publishers.170-36 shinzaike w akayama. 640, 1991 [In Japanese].
  • 13. Ni Q., XU G., GAO Q., YANG D., ZHANG Y. Evaluation of reactive oxygen species scavenging activities and DNA damage prevention effect of Pleioblastus kongosanensis f. aureostriatus leaf extract by chemiluminescence assay. J Photochem Photobiol B. 128, 115, 2013.
  • 14. ZHANG X Z. The measurement and mechanism of lipid peroxidation and SOD, POD and CAT activities in biological system. In: Zhang XZ (ed) Research Methodology of Crop Physiology .Beijing Agriculture Press. 208, 1992.
  • 15. AEBI H. Catalase in vitro .Methods in Enzymology. 105, 121, 1984.
  • 16. DUAN B., LU Y., YIN C., JUNTTILA O., LI C. Physiological response to drought and shade in two contrasting picea asperata population. Physiol Plant. 124, 476, 2005.
  • 17. BRADFORD M.M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding.Analytical Biochemistry. 72, 248, 1976.
  • 18. BAI X.Y., DONG Y. J., WANG Q.H., XU L.L., KONG J., LIU S. Effects of lead and nitric oxide on photosynthesis, antioxidative ability, and mineral element content of perennial ryegrass .Biologia Plantarum. 59 (1), 163, 2015 .
  • 19. TERZI H., YILDIZ M. Interactive effects of sulfur and chromium on antioxidative defence systems and BnMP1 gene expression in canola (Brassica napus L.) cultivars differing in Cr (VI) tolerance.Ecotoxicology. 24, 1171, 2015.
  • 20. KANG C., KUBA T., HAO A., ISERI Y., Antioxidant Responses of Vallisneria asiatica to Eutrophic Sediments in Lake Taihu, China. Bull Environ Contam Toxicol. 95, 194, 2015.
  • 21. WANG Y.J., DONG Y.X., WANG J., CUI X. M. Alleviating effects of exogenous NO on tomato seedlings under combined Cu and Cd stress .Environ Sci Pollut Res Int. 23 (5), 4826, 2016.
  • 22. BAH A.M., DAI H., ZHAO J., SUN H., CAO F., ZHANG G., WU F. Effects of Cadmium, Chromium and Lead on Growth, Metal Uptake and Antioxidative Capacity in Typha angustifolia, Biol Trace Elem Res. 142 (1), 77, 2011.
  • 23. ZAYNEB C., BASSEM K., ZEINEB K., GRUBB C.D., NOUREDDINE D., HAFEDH M., AMINE Physiological responses of fenugreek seedlings and plants treated with cadmium .Environ Sci Pollut Res Int. 22, 10679, 2015.
  • 24. DAZY M., MASFARAUD J.F., FERARD J.F. Induction of oxidative stress biomarkers associated with heavy metal stress in Fontinalis antipyretica Hedw .Chemosphere. 75, 297, 2009.
  • 25. JABEEN N., ABBAS Z., IQBAL M., RIZWAN M., JABBAR A., FARID M., ALI S., IBRAHIM M., ABBAS F. Glycinebetaine mediates chromium tolerance in mung bean through lowering of Cr uptake and improved antioxidant system. Archives of Agronomy and Soil Science. 62 (5), 648, 2016.
  • 26. HE J., JI Z.X., WANG Q.Z., LIU C.F., ZHOU Y.B. Effect of Cu and Pb pollution on the growth and antioxidant enzyme activity of Suaeda heteroptera.Ecological Engineering. 87, 102, 2016.
  • 27. MALAR S., VIKRAM S.S., FAVAS P.J.C., PERUMAL V. Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Botanical Studies. 55, 54, 2014.
  • 28. MALAR S., MANIKANDAN R., FAVAS P.J., VIKRAM SAHI S., VENKATACHALAM P. Effect of lead on phytotoxicity, growth, biochemical alterations and its role on genomic template stability in Sesbania grandiflora: a potential plant for phytoremediation. Ecotoxicol Environ Saf. 108, 249, 2014.
  • 29. LIU J.J., WEI J., LI J.H. Effects of copper on leaf membrane structure and root activity of maize seedling .Botanical Studies. 55, 47, 2014.
  • 30. ZAHEER I.E., ALI S., RIZWAN M., FARID M., SHAKOOR M.B., GILL R.A., NAJEEB U., IQBAL N., AHMAD R. Citric acid assisted phytoremediation of copper by Brassicanapus L . Ecotoxicol Environ Saf. 120, 310, 2015.
  • 31. FATNASSI I.C., CHIBOUB M., SAADANI O., JEBARA M., JEBARA S.H. Impact of dual inoculation with Rhizobium and PGPR on growth and antioxidant status of Vicia faba L. under copper stress .C R Biol. 338 (4), 241, 2015.
  • 32. GONZALEZ C.I., MAINE M.A., CAZENAVE J., HADAD H.R., BENAVIDES M.P. Ni accumulation and its effects on physiological and biochemical parameters of Eichhornia crassipes. Environ. Exp. Bot. 117, 20, 2015.
  • 33. LOMAGLIO T., ROCCO M., TRUPIANO D., DE ZIOA E., GROSSO A., MARRA M., DELFINE S., CHIATANTE D., MORABITO D., SCIPPA G.S. Effect of short-term cadmium stress on Populus nigra L. detached leaves. J Plant Physiol. 182, 40, 2015.
  • 34. CHAI M., SHI F., LI R., QIU G., LIU F., LIU L. Growth and physiological responses to copper stress in a halophyte Spartina alterniflora (Poaceae). Acta Physiol Plant. 36, 745, 2014.
  • 35. HASSAN M., MANSOOR S. Oxidative stress and antioxidant defense mechanism in mung bean seedlings after lead and cadmium treatments.Turk J Agric For. 38, 55, 2014.
  • 36. LIU D., LI T.Q., YANG X.E., ISLAM E., JIN X.F., MAHMOOD Q. Effect of Pb on leaf antioxidant enzyme activities and ultrastructure of the two ecotypes of Sedum alfredii Hance. Russ J Plant Physiol. 55, 68, 2008.
  • 37. BELKHADI A., HEDIJI H., ABBES Z., NOUAIRI I., BARHOUMI Z., ZARROUK M., CHAIBI W., DJEBALI W. Effects of exogenous salicylic acid pre-treatment on cadmium toxicity and leaf lipid content in Linum usitatissimum L. Ecotoxicol Environ Saf. 73, 1004, 2010.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.