PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 2 |

Tytuł artykułu

Removing cationic dye from aqueous solutions using as-grown and modified multi-walled carbon nanotubes

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In this research we studied the adsorption process of Basic Red 46 (BR46) cationic dye onto as-grown (MWCNTs) and modified multi-walled carbon nanotubes (MWCNTs-MOD). MWCNTs were synthesized by the chemical vapor deposition method using ethylene as a carbon source and nanocrystalline iron as catalyst, and oxidized by concentrated nitric acid to give MWCNTs-MOD. The adsorbents were characterized by XRD, TGA, HRTEM, FTIR, BET, and zeta potential measurements. The effects of initial dye concentration (5 to 40 mg L⁻¹), pH (4.0 to 11.5), and temperature (20, 40, and 60°C) on BR46 adsorption onto MWCNTs and MWCNTs-MOD were studied. The isotherm data were analyzed using Langmuir and Freundlich equations. The equilibrium data fit well the Langmuir isotherm for both MWCNTs and MWCNTs-MOD. The maximum adsorption capacities of BR46 onto MWCNTs and MWCNTs-MOD were 19.5 and 51.8 mg g⁻¹, respectively. The pseudo first-order and pseudo second-order kinetic models and the intraparticle diffusion model were used to describe the kinetic data. Kinetic studies showed that the kinetic data were well described by the pseudo second-order kinetic model. The experimental results indicated that the maximum BR46 removal could be attained at a solution pH of 11.5 and the adsorption capacity obtained was 23.5 and 57.2 mg g⁻¹ for MWCNTs and MWCNTs-MOD, respectively. Thermodynamic parameters (ΔGᴼ, ΔHᴼ, ΔSᴼ) were obtained and it was found that the adsorption of BR46 onto MWCNTs and MWCNTs-MOD was an endothermic and spontaneous process.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

2

Opis fizyczny

p.717-727,fig.,ref.

Twórcy

autor
  • Department of Environmental Protection, Maritime University of Szczecin, Szczecin, Poland
autor
  • Institute of Chemical and Environment Engineering, West Pomeranian University of Technology, Szczecin, Poland

Bibliografia

  • 1. BAYRAMOGLU G., ALTINTAS B., ARICA M.Y. Adsorption kinetics and thermodynamic parameters of cationic dyes from aqueous solutions by using a new strong cation-exchange resin. Chem. Eng. J. 152, 339, 2009.
  • 2. MOGHADDAM S.S., MOGHADDAM M.R.A, ARAMI M. Coagulation/flocculation process for dye removal using sludge from water treatment plant: Optimization through response surface methodology. J. Hazard. Mater. 175 (1-3), 651, 2010.
  • 3. BOURAIE M.E., DIN W.S.E. Biodegradation of Reactive Black 5 by Aeromonas hydrophila strain isolated from dye-contaminated textile wastewater. Sustain. Environ. Res. 26 (5), 209, 2016.
  • 4. YAGUB M.T., SEN T.K., AFROZE S., ANG H.M. Dye and its removal from aqueous solution by adsorption: A review. Adv. Colloid Interface Sci. 209, 172, 2014.
  • 5. MOHAMMADI N., KHANI H., GUPTA V.K., AMEREH E., AGARWAL S. Adsorption process of methyl orange dye onto mesoporous carbon material-kinetic and thermodynamic studies. J. Colloid Interface Sci. 362(2), 457, 2011.
  • 6. GUPTA V.K., KUMAR R., NAYAK A., SALEH T.A., BARAKAT M.A. Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review. Adv. Colloid Interface Sci. 193-194, 24, 2013.
  • 7. JIRANKOVA H., MRAZEK J., DOLECEK P., CAKL J. Organic dye removal by combined adsorption-membrane separation process. Desalin. Water Treat. 20, 96, 2010.
  • 8. RALIYA R., AVERY C., CHAKRABARTI S., BISWAS P. Photocatalytic degradation of methyl orange dye by pristine titanium dioxide, zinc oxide, and graphene oxide nanostructures and their composites under visible light irradiation. Appl. Nanosci. 7 (5), 253, 2017.
  • 9. GUPTA V.K., JAIN R., MITTAL A., SALEH T.A., NAYAK A., AGARWAL S., SIKARWAR S. Photocatalytic degradation of toxic dye amaranth on TiO₂/UV in aqueous suspensions. Mater. Sci. Eng. C. 32 (1), 12, 2012.
  • 10. SARAVANAN R., KARTHIKEYAN S., GUPTA V.K., SEKARAN G., NARAYANAN V., STEPHEN A. Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Mater. Sci. Eng. C. 33, 91, 2013.
  • 11. KASIRI M.B., MODIRSHAHLA N., MANSOURI H. Decolorization of organic dye solution by ozonation; Optimization with response surface methodology. Int. J. Ind. Chem. 4 (3), 1, 2013.
  • 12. PATHANIA D., SHARMA S., SINGH P. Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arabian J. Chem. 10, S1445, 2017.
  • 13. VAKILI M., RAFATULLAH M., SALAMATINIA B., ABDULLAH A.Z., IBRAHIM M.H., TAN K.B., GHOLAMI Z., AMOUZGAR P. Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: A review. Carbohydr. Polym. 113, 115, 2014.
  • 14. KUO C.Y., WU C.H., WU J.Y. Adsorption of direct dyes from aqueous solutions by carbon nanotubes: Determination of equilibrium, kinetics and thermodynamics parameters. J. Colloid Interface Sci. 327, 308, 2008.
  • 15. RAMESHA G.K., KUMARA A.V., MURALIDHARA H.B., SAMPATH S. Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. J. Colloid Interface Sci. 361, 270, 2011.
  • 16. WANG S., LI H., XU L. Application of zeolite MCM-22 for basic dye removal from wastewater. J. Colloid Interface Sci. 295 (1), 71, 2006.
  • 17. ELASS K., LAACHACH A., ALAOUI A., AZZI M. Removal of methyl violet from aqueous solution using a stevensite-rich clay from Morocco. Appl. Clay Sci. 54, 90, 2011.
  • 18. JANHOM S., WATANESK R., WATANESK S., GRIFFITHS P., ARQUERO O.A., NAKSATA W. Comparative study of lac dye adsorption on cotton fibre surface modified by synthetic and natural polymers. Dyes Pigments 71 (3), 188, 2006.
  • 19. ARAMI M., LIMAEE N.Y., MAHMOODI N.M., TABRIZI N.S. Removal of dyes from colored textile wastewater by orange peel adsorbent: Equilibrium and kinetic studies. J. Colloid Interface Sci. 288 (2), 371, 2005.
  • 20. ZENG S., DUAN S., TANG R., LI L., LIU C., SUN D. Magnetically separable Ni₀.₆Fe₂.₄O₄ nanoparticles as an effective adsorbent for dye removal: Synthesis and study on the kinetic and thermodynamic behaviors for dye adsorption. Chem. Eng. J. 258, 218, 2014.
  • 21. SUN D., ZHANG X., WU Y., LIU X. Adsorption of anionic dyes from aqueous solution on fly ash. J. Hazard. Mater. 181, 335, 2010.
  • 22. QU S., HUANG F., YU S., CHEN G., KONG J. Magnetic removal of dyes from aqueous solution using multi-walled carbon nanotubes filled with Fe₂O₃ particles. J. Hazard. Mater. 160, 643, 2008.
  • 23. GONG J.L., WANG B., ZENG G.M., YANG C.P., NIU C.G., NIU Q.Y, ZHOU W.J., LIANG Y. Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. J. Hazard. Mater. 164, 1517, 2009.
  • 24. GAO H., ZHAO S., CHENG X., WANG X., ZHENG L. Removal of anionic azo dyes from aqueous solution using magnetic polymer multi-wall carbon nanotube nanocomposite as adsorbent. Chem. Eng. J. 223, 84, 2013.
  • 25. KUO C.Y, WU C.H., WU J.Y. Adsorption of direct dyes from aqueous solutions by carbon nanotubes: Determination of equilibrium, kinetics and thermodynamics parameters. J. Colloid Interface Sci. 327, 308, 2008.
  • 26. YAO Y., XU F., CHEN M., XU Z., ZHU Z. Adsorption behavior of methylene blue on carbon nanotubes. Bioresour. Technol. 101, 3040, 2010.
  • 27. YAO Y., HE B., XU F., CHEN X. Equilibrium and kinetic studies of methyl orange adsorption on multi-walled carbon nanotubes. Chem. Eng. J. 170, 82, 2011.
  • 28. WANG S., NG C.W., WANG W., LI Q., HAO Z. Synergistic and competitive adsorption of organic dyes on multi-walled carbon nanotubes. Chem. Eng. J. 197, 34, 2012.
  • 29. GHAEDI M., KOKHDAN S.N. Oxidized multi walled carbon nanotubes for the removal of methyl red (MR): kinetics and equilibrium study. Desalin. Water Treat. 49, 317, 2012.
  • 30. GHAEDI M., KHAJEHSHARI H., YADKURI A.H., ROOSTA M., ASGHARI A. Oxidized multi-walled carbon nanotubes as efficient adsorbent for bromothymol blue. Toxicol. Environ. Chem. 94, 873, 2012.
  • 31. MISHRA A.K., AROCKIADOSS T., RAMAPRABHU S. Study of removal of azo dye by functionalized multi walled carbon nanotubes. Chem. Eng. J. 162, 1026, 2010.
  • 32. SHEIBANI M., GHAEDI M., MARAHEL F., ANSARI A. Congo red removal using oxidized multi-walled carbon nanotubes: kinetic and isotherm study. Desalin. Water Treat. 53 (3), 844, 2015.
  • 33. DUMAN O., TUNÇ S., POLAT T.G., BOZOĞLAN B.K. Synthesis of magnetic oxidized multi-walled carbon nanotube-κ-carrageenan-Fe₃O₄ nanocomposite adsorbent and its application in cationic Methylene Blue dye adsorption. Carbohydr. Polym. 147, 79, 2016.
  • 34. PEŁECH I. Preparation of carbon nanotubes using CVD method. Pol. J. Chem. Tech. 12 (3), 45, 2010.
  • 35. CHEN J., CHEN Q., MA Q., LI Y., ZHU Z. Chemical treatment of CNTs in acidic KmnO₄ solution and promoting effects on the corresponding Pd-Pt/CNTs catalyst. J. Mol. Catal. A: Chem. 356, 114, 2012.
  • 36. ANKU W.W, OPPONG S.O.B., SHUKLA S.K., AGORKU E.S, GOVENDER P.P Cobalt doped ZrO₂ decorated multi-walled carbon nanotube: A promising nanocatalyst for photodegradation of indygo carmine and eosin Y dyes. Prog. Nat. Sci. 26, 354, 2016.
  • 37. COATES J.P. A Practical Approach to the Interpretation of Infrared Spectra. Encyclopedia of Analytical Chemistry, John Wiley & Sons Ltd., Chichester, 2000.
  • 38. CHEN J., ZHU Z.H., MA Q., LI L., RUDOLPH V., LU G.Q. Effects of pre-treatment in air microwave plasma on the structure of CNTs and the activity of Ru/CNTs catalysts for ammonia decomposition. Catal. Today 148, 97, 2009.
  • 39. KOLACYAK D., IHDE J., MERTEN C., HARTWIG A., LOMMATZSCH U. Fast functionalization of multi-walled carbon nanotubes by an atmospheric pressure plasma jet. J. Colloid Interface Sci. 359, 311, 2011.
  • 40. WU S., ZHAO X., LI Y., DU Q., SUN J., WANG Y., WANG X., XIA Y., WANG Z., XIA L. Adsorption Properties of Doxorubicin Hydrochloride onto Graphene Oxide: Equilibrium, Kinetic and Thermodynamic Studies. Materials 6, 2026, 2013.
  • 41. LI L., LIU S., ZHU T. Application of activated carbon derived from scrap tires for adsorption of Rhodamine B. J. Environ. Sci. 22 (8), 1273, 2010.
  • 42. WEBER W.J., MORRIS J.C. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. 89, 31, 1963.
  • 43. LANGMUIR I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361, 1918.
  • 44. FREUNDLICH H. Concerning adsorption in solutions. Zeitschrift fur physikalische Chemie 57, 385, 1906.
  • 45. DENIZ F., SAYGIDEGER S.D. Removal of a hazardous azo dye (Basic Red 46) from aqueous solution by princess tree leaf. Desalination 268, 6, 2011.
  • 46. KARIM A.B., MOUNIR B., HACHKAR M., BAKASSE M., YAACOUBI A. Removal of Basic Red 46 dye from aqueous solution by adsorption onto Moroccan clay. J. Hazard. Mater. 168, 304, 2009.
  • 47. KONICKI W., ALEKSANDRZAK M., MIJOWSKA E. Equilibrium, kinetic and thermodynamic studies on adsorption of cationic dyes from aqueous solutions using graphene oxide. Chem. Eng. Res. Des. 123, 35, 2017.
  • 48. DUC D.S., VAN NOI N., TRUNG D.Q., QUYEN V.T., NINH V.T. Adsorption of Basic Red 46 onto activated carbon. Res. J. Chem. Environ. 16 (4), 169, 2012.
  • 49. QU S., HUANG F., YU S., CHEN G., KONG J. Magnetic removal of dyes from aqueous solution using multi-walled carbon nanotubes filled with Fe₂O₃ particles. J. Hazard. Mater. 160, 643, 2008.
  • 50. KARAGOZ S., TAY T., UCAR S., ERDEM M. Activated carbons from waste biomass by sulfuric acid activation and their use on methylene blue adsorption. Bioresource Technol. 99, 6214, 2008.
  • 51. CHATTERJEE S., WOO S.H. The removal of nitrate from aqueous solutions by chitosan hydrogel beads. J. Hazard. Mater. 164, 1012, 2009.
  • 52. CRINI G., BADOT P.-M. Sorption processes and pollution. Conventional and non-conventional sorbents for pollutant removal from wastewaters, Presses universitaires de Franche-Comté, France, 2010.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-0ed73365-6590-469d-8b33-3af29d0a1ad6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.