Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 20 | 1 |
Tytuł artykułu

Effect of manganese on nutrient content in tomato (Lycopersicon esculentum Mill.) leaves

Treść / Zawartość
Warianty tytułu
Języki publikacji
Manganese (Mn) is a microelement, but it is also a heavy metal whose excess may have a toxic effect on plants. The aim of the study was to evaluate the effect of an application of increasing Mn concentrations added to a nutrient solution on the content of macro- and mi- cronutrients in tomato leaves (Lycopersicon esculentum Mili., cv. Alboney F4 and Emotion F,). Plants were grown in rockwool using a nutrient solution with the following content of manga­nese (mg dm'3): 0.06; 0.3; 0.6; 1.2 (experiment I, in 2008-2011); 2.4, 4.8; 9.6; 19.2 mg dm3 (expe- riment II, in 2012) - designated the symbols Mn-0; Mn-0.3; Mn-0.6; Mn-1.2; Mn-2.4; Mn-4.8; Mn-9.6; Mn-19.2. The nutrient solution used for plant fertigation had the following Chemical composition (mg dm'3): N-N'H4 2.2, N-N03 230, P 50, K 430, Ca 145, Mg 65, Cl 35, S-SO, 120, Fe 2.48, Zn 0.50, Cu 0.07, pH 5.50, EC 3.00 mS cm1. Manganese significantly influenced the content of other macro- and microelements in leaves. In variant Mn-0, the content of N, P, K, Ca, Mg, Mn decreased, while that of of Fe, Zn, Cu was higher; in Mn-1.2, the content of N, Mg, Fe, Zn decreased and that of P, K, Ca, Mn increased compared with the variants which ensured optimal yielding. In the rangę of manganese nutrition from Mn-4.8 to Mn-19.2, N, K, Mg, Fe, Zn, Cu were lower and the content of P and Mn was higher (above optimal). The cultivar signifi­cantly modified the nutrient status of plants concerning nitrogen (for Mn-9.6 and Mn-19.2), pho- sphorus (for Mn-1.2 and Mn-2.4), potassium (for Mn-4.8 and Mn-9.6), calcium (for Mn-0, Mn-1.2, Mn-9.6), magnesium (Mn-0 and Mn-0.6), iron (Mn-0, Mn-0.3, Mn-9.6), manganese (Mn-0.3, Mn- 1.2, Mn-2.4, Mn-19.2), iron (Mn-0, Mn-0.3, Mn-9.6), zinc (Mn-0.6, Mn-1.2, Mn-2.4, Mn-9.6) and copper (Mn-2.4, Mn-4.8, Mn-9.6, Mn-19.2). Briefly, both deficit or excess manganese nutrition could induce disorders in the uptake of other nutrients, which may influence plant yielding.
Słowa kluczowe
Opis fizyczny
  • Chair of Plant Nutrition, University of Life Sciences in Poznan, Zgorzelecka 4, 60-198 Poznan, Poland
  • Adamicki F., Dyśko J., Nawrocka B., Ślusarski C., Wysocka-Owczarek M. 2005. Methodology of integrated production of tomatoes under couer. PIORIN, Warszawa, (in Polish)
  • Agric. Service Laboratory Clemson Extension. 2001. Guidelines for sampling and interpreting results. 2001.
  • Atherton J.G., Rudich J., Adams P. 1986. The tomato crop. A scientific basie for improoement. Champman and Hall., London, New York, 281-334.
  • Breś W., Ruprik B. 2007. Growing of greenhouse cherry tomato in coconut fibrę with differen- tiated nitrogen and potassium fertilization. Part IV. Assessment of nutritional status of plants. Acta Agroph., 9(2): 297-305. (in Polish)
  • Breś W., Gołcz A., Komosa A. (ed.), Kozik E. 2012. Nutrition of horticultural plants. Fundamen- tals and perspectives. PWRiL, 204-205. (in Polish)
  • Campbel C.R. 2000. References sufficiency ranges for plant analysis in the Southern region. References sufficiency ranges uegetable crops. Southern Cooperative Ser., Buli, 394. Chohura P., Komosa A. 2003a. Nutrition status of greenhouse tomato grown in inert media. Part I. Macroelements. Acta Sci. Pol. Hort. Cult., 2(2): 3-13.
  • Chohura P., Komosa A. 2003b. Nutrition status of greenhouse tomato grown in inert media. Part II. Microelements. Acta Sci. Pol. Hort. Cult., 2(2): 15-23.
  • Chohura P., Komosa A., Kołota E. 2006. Effect of iron chelates of Librel Fe-DP7, Pionier Fe 13 and Top 12 on nutritional status of microelements of greenhouse tom ato grown in rock- wool. Acta Agroph.,7(3): 549-55.
  • Chohura P., Kołota E., Komosa E. 2009. Effect of fertilization with Fe chelates on the State of iron nutrition ofgreenhouse tomato. J. Elem., 14(4): 657-664.
  • Clark R.B. 1982. Plant response to minerał element tońcity and deficiency. In: Breeding plants for less fauorable enuironments. M.N. Christiansen and C.F. Lewis (eds.), John Wiley & Sons, New York, 71-142.
  • Ducie T., Polle A. 2005. Transport and detoxification of manganese and copper in plants. Brąz. J. Plant Physiol., 17: 103-112.
  • Fleming A.L. 1989. Enhanced Mn accumulation by snapbean cultioars under Fe stress. J. Plant Nutr., 12: 715-731.
  • Foy C.D., H.W. Webb Jones J.E. 1981. Adaptation of cotton genotypes to an acid, manganesetońcsoil. Agron. J., 73: 107-111. D01:10.2134/agronjl981.00021962007300010024x
  • Galvez, L., R.B. Clark, L.M. Gourley, J.W. Maranville. 1989. Effect of Silicon on minerał composition of sorghum growth with excess manganese. J. Plant Nutr., 12: 547- 561. DOI: 10.1080/01904168909363973
  • Heenan D.P., Carter D.G. 1975. Response of two soybean cultiuares to manganese tońcity as affected by pH and calcium leuels. Aust. J. Agric. Res., 26: 967-974.
  • Horst W.J. 1988. The physiology of manganese tońcity. In: Manganese in soil and plants. R.D. Graham, R.J. Hannam, N.J. Uren (ed.). Kluwer Acad. Publ., Dordrecht, Holand, 175-188.
  • Horst W.J., Marschner H. 1978a. Effect of Silicon on alleoiation of manganese tońcity ofbarley. J. Plant Nutr., 10: 2299-2310.
  • Horst W.J., Marschner H. 19786. Effect of Silicon on manganese tolerance of bean plants (Phaseolus uulgaris h.). Plant Soil, 50: 287-303.
  • Humphries J. M., Stangoulis J.C.R., Graham R. D. 2007. Manganese In: Handbook of plant nu­trition. A.V. Barker, D.J. Pilbeam, Taylor & Francis Group (ed.), 351-374.
  • IUNG 1972. Analytical methods in agricultural chemistry stations. Part II. Plant analyses. Pu­ławy, Poland. (in Polish)
  • Jarosz Z. 2006. Effect of differents types of potassium fertilisation on the Chemical composition ofleaces and fruits of greenhouse tomatoes grown in oarious substrates. Acta Sci. Pol. Hort. Cult., 5(1): 11-18.
  • Jarosz Z., Horodko K. 2004. The yielding and minerał composition of greenhouse tomato grown in inert media. Rocz. AR, Pozn. 356, Ogrodnictwo, 37: 81-86. (in Polish)
  • Jarosz Z., Dzida K. 2011. Effect of substratum and nutrient solution upon yielding and Chemical composition of leaoes and fruits of glasshouse tomato grown in prolonged cycle. Acta Sci. Pol. Hort. Cult., 10(3): 247-258.
  • Kasraei R., RoGRfGUEZ-BARRUECO, Arroyo M.I. 1996. The effect of Al and Mn on growth and minerał composition of Casuarina equisetifolia Forst., Fertilizers Environ., 75-81. DOI: 10.1007/978-94-009-1586-2_15
  • Każda, M., Znacek L. 1989. Aluminum and manganese and their relation to calcium in soil solu­tion and needles in three Norway spruce (Picea abies L. Karst.) stands of upper Australia. Plant Soil, 114: 257-267.
  • Kleiber T. 2014. Influence of manganese on yielding of tomato (Lycopersicon esculentum Mili.) cultiuated in rockwool. Nauka Przyr. Technol. 8, 2, #14 (in Polish)
  • Kołota E., Chohura P., Komosa A. 2013. Efficiency of chelate forms of micronutrients in nu­trition of greenhouse tomato grown in rockwool. J. Elem., 18(4): 635-647. DOI: 10.5601/ jelem.2013.18.4.525
  • Kowalska I. 2004. The effect of different sulphate leoels in the nutrient solution and type of me­dium on the yield, minerał composition and quality of tomato grown in the NFT. Acta Sci. Pol. Hort. Cult., 3(1): 153-164. (in Polish)
  • Kozik E., Tyksiński W., Komosa A. 2008. Effect of chelated and minerał forms of micronutrients on their content in leaues and the yield of lettuce. Part I. Manganese. Acta Sci. Pol. Hort. Cult., 7(1): 73-82.
  • Kozłowska M. (ed.), Bandurska H., Floryszak-Wieczorek J., Politycka B. 2007. Plant physiolo- gy. PWRiL, Warszawa, (in Polish)
  • Kreij de C., Sonneveld C., Warmenhoven M.G., Straver N. 1990. Guide values for nutrient ele­ment content of oegetables and flowers under glass. Voedingsoplossingen Glastuinbouw 15.
  • Landi S., Fagioli F. 1983. Efficiency of manganese and copper nutrition of canola. Can. J. Soil Sci., 69: 119-125.
  • Lee C.R. 1972. Interrelationships of aluminum and manganese on the potato plant. Agron. J., 64: 546-547.
  • Lee T. J, Luitel B. P., Kang W. H. 2011. Growth and physiological response to manganese toxicity in Chinese Cabbage (Brassica rapa L. ssp. campestris). Hort. Environ. Biotechnol., 52(3): 252-258. DOI: 10.1007/sl3580-011-0224-3
  • Lidon F.C., Barreiro M., Ramalho J. 2004. Manganese accumulation in rice: implications for photosynthetic functioning. J. Plant Physiol., 161: 1235-1244.
  • Lohnis M.P. 1960. Effect of magnesium and calcium supply on the uptake of manganese by oari- ous crop plants. Plant Soil, 12: 339-376.
  • Marschner H. 1998. Minerał nutrition of higher plants. 2nd Edition. Academic Press. Harcourt Brace & Company, Publishers, London, San Diego, New York, Boston, Sydney, Tokyo, To­ronto, 3-680.
  • Nurzyński J. 2006. Yielding and Chemical composition of greenhouse tomato groum in ecological substrates. Acta Agroph., 7(3): 681-690. (in Polish)
  • Osawa, T., Ikeda H. 1976. Heaoy metal toxicities in oegetable crops. I. The effect of iron eon- centrations in the nutrient solution on manganese toxicities in oegetable crops. J. Jpn. Soc. Hort. Sci., 45: 50-58.
  • Pawlińska A., Komosa A. 2006. Effect of substrates and nutrient Solutions on the status of ni- trogen, phosphorus and potassium in greenhouse tomato. Acta Agroph.,7(3): 691-698. (in Polish)
  • Plank C.O. 1999. Plant analysis handbook for Georgia. University of Georgia.
  • Sawas D., Papastavrou D., Ntatsi G., Ropokis A., Olympios C. 2009. Interactioe effects of graft- ing and manganese supply on growth, yield, and nutrient uptake by tomato. Hort. Sci., 44(7): 1978-1982.
  • Shenker, M., Plessner O.E., Tel-Or E. 2004. Manganese nutrition effects on tomato growth, chlorophyll concentration, and superoxide dismutase actioity. J. Plant Physiol., 161: 197-202.
  • Uchida R. 2000. Recommended plant tissue nutrient leoels for some oegetable, fruit and orna- mental foliage and flowering plants in Hawaii. Plant nutrient management in Hawaii’s soils. College of Tropical Agriculture and Humań Resources, University of Hawaii at Ma- noa, 57-64.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.