PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 34 | 5 |
Tytuł artykułu

Cloning and characterization of a type 1 metallothionein gene from the copper-tolerant plant Elsholtzia haichowensis

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
EhMT1, a type 1 metallothionein (MT) gene, was cloned from Elsholtzia haichowensis, a Cu-tolerant plant. Typical of plant type 1MTs,EhMT1encodes a putative peptide of 74 amino acid residues containing cysteine-rich domains. Sequence comparisons with various databases revealed strong similarities at the nucleotide and amino acid levels between EhMT1 and the type 1 MT of Mimulus guttatus. EhMT1 transcriptionwas greater in the roots than in the leaves, and was markedly increased by treatments with Cu, H₂O₂, and heat shock. EhMT1-GUS was localized to the cytoplasm of onion epidermal cells. Escherichia coli cells expressing pET-30a-EhMT1 were more tolerant to Cu and accumulated more Cu than control cells. Our results show that EhMT1 is involved in Cu tolerance and accumulation in E. haichowensis.
Słowa kluczowe
EN
Wydawca
-
Rocznik
Tom
34
Numer
5
Opis fizyczny
p.1819-1826,fig.,ref.
Twórcy
autor
  • College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, The People's Republic of China
autor
  • College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, The People's Republic of China
autor
  • College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, The People's Republic of China
autor
  • College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, The People's Republic of China
autor
  • College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, The People's Republic of China
autor
  • State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095 Nanjing, The People's Republic of China
autor
  • College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, The People's Republic of China
Bibliografia
  • An ZG, Li CJ, Zu YG, Du YJ, Wachter A, Gromes R, Rausch T (2006) Expression of BjMT2, a metallothionein 2 from Brassica juncea, increases copper and cadmium tolerance in Escherichia coli and Arabidopsis thaliana, but inhibits root elongation in Arabidopsis thaliana seedlings. J Exp Bot 57(14):3575–3582
  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126
  • Callahan DL, Baker AJ, Kolev SD, Wedd AG (2006) Metal ion ligands in hyperaccumulating plants. J Biol Inorg Chem 11:2–12
  • Castiglione S, Franchin C, Fossati T, Lingua G, Torrigiani P, Biondi S (2007) High zinc concentrations reduce rooting capacity and alter metallothionein gene expression in white poplar (Populus alba L. cv. Villafranca). Chemosphere 67:1117–1126
  • Chae HZ, Uhm TB, Rhee SG (1994) Dimerization of thiol-specific antioxidant and the essential role of cysteine-47. P Natl Acad Sci USA 91:7022–7026
  • Chen WM, Hsieh HM, Huang PC (1998) Type 2 rice metallothioneinlike gene has two introns. DNA Seq 8:223–228
  • Choi D, Kim HM, Yun HK, Park JA, Kim WK, Bok SH (1996) Molecular cloning of a metallothionein-like gene from Nicotiana glutinosa L. and its induction by wounding and tobacco mosaic virus infection. Plant Physiol 112:353–359
  • Cobbett C, Goldbrough PB (2002) Phytochelatins and metallathioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182
  • de Miranda JR, Thomas MA, Thurman DA, Tomsett AB (1990) Metallothionein genes from the flowering plant Mimulus guttatus. FEBS Lett 260:277–280
  • Evans KM, Gatehouse JA, Lindsay WP, Shi JG, Tommey AM, Robinson NJ (1992) Expression of the pea metallothionein-like gene PsMTA in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: implications for PsMTA function. Plant Mol Biol 20:1019–1028
  • García-Hernández M, Murphy A, Taiz L (1998) Metallothioneins 1 and 2 have distinct but overlapping expression patterns in Arabidopsis. Plant Physiol 118:387–397
  • Giordani T, Natali L, Maserti BE, Taddei S, Cavallini A (2002) Characterization and expression of DNA sequences encoding putative type-II metallothioneins in the seagrass Posidonia oceanica. Plant Physiol 123:1571–1581
  • Guo WJ, Bundithya W, Goldsbrough PB (2003) Characterization of the Arabidopsis metallothionein gene family: tissue-specific expression and induction during senescence and in response to copper. New Phytol 159:369–381
  • Guo WJ, Meetam M, Goldsbrough PB (2008) Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiol 146: 1697–1706
  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11
  • Hassinen VH, Tervahauta AI, Halimaa P, Plessl M, Peräniemi S, Schat H, Aarts MGM, Servomaa K, Kärenlampi SO (2007) Isolation of Zn-responsive genes from two accessions of the hyperaccumulator plant Thlaspi caerulescens. Planta 225:977–989
  • Hsieh HM, Liu WK, Huang PC (1995) A novel stress-inducible metallothionein-like gene from rice. Plant Mol Biol 28:381–389
  • Hsieh HM, Liu WK, Chang A, Huang PC (1996) RNA expression patterns of a type 2 metallothionein-like gene from rice. Plant Mol Biol 32:525–529
  • Hudspeth RL, Hobbs SL, Anderson DM, Rajasekaran K, Grula JW (1996) Characterization and expression of metallothionein-like genes in cotton. Plant Mol Biol 31:701–705
  • Jefferson RA, Kavanagh TA, Bevan MW (1987) Gus fusions-betaglucuronidase as a sensitive and versatile gene fusion marker in higher-plants. EMBO J 6:3901–3907
  • Jin SM, Cheng YX, Guan QJ, Liu DL, Takano T, Liu SK (2006) A metallothionein-like protein of rice (rgMT) functions in E. coli and its gene expression is induced by abiotic stresses. Biotechnol Lett 28:1749–1753
  • Kabata-Pendias A, Pendias H (1992) Trace elements in soils and plants, 2nd edn. CRC Press, Boca Raton
  • Kim SH, Lee HS, Song WY, Choi KS, Hur H (2007) Chloroplasttargeted BrMT1 (Brassica rapa type-1 metallothionein) enhances resistance to cadmium and ROS in transgenic Arabidopsis plants. J Plant Biol 50(1):1–7
  • Lee J, Shim D, Song WY, Hwang I, Lee Y (2004) Arabidopsis metallothioneins 2a and 3 enhance resistance to cadmium when expressed in Vicia faba guard cells. Plant Mol Biol 54:805–815
  • Lou LQ, Shen ZG, Li XD (2004) The copper tolerance mechanisms of Elsholtzia haichowensis, a plant from copper-enriched soils. Environ Exp Bot 51:111–120
  • Ma M, Lau PS, Jia YT, Tsang WK, Lam SKS, Tam NFY, Wong YS (2003) The isolation and characterization of type 1 metallothionein (MT) cDNA from a heavy-metal-tolerant plant, Festuca rubra cv Merlin. Plant Sci 164:51–60
  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London
  • Mengoni A, Gonnelli C, Hakvoort HWJ, Galardi F, Bazzicalupo M, Gabbrielli R, Schat H (2003) Evolution of copper-tolerance and increased expression of a 2b-type metallothionein gene in Silene paradoxa L. populations. Plant Soil 257:451–457
  • Mir G, Domenech J, Huguet G, Guo WJ, Goldsbrough P, Atrian S, Molinas M (2004) A plant type 2 metallothionein (MT) from cork tissue responds to oxidative stress. J Exp Bot 55:2483–2493
  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410
  • Morris CA, Nicolaus B, Sampson V, Harwood JL, Kille P (1999) Identification and characterization of a recombinant metallothionein protein from a marine alga, Fucus vesiculosus. Biochem J 338:553–560
  • Moyle R, Fairbairn DJ, Ripi J, Crowe M, Botella JR (2005) Developing pineapple fruit has a small transcriptome dominated by metallothionein. J Exp Bot 56:101–112
  • Murphy A, Taiz L (1995) Comparison of metallothionein gene expression and nonprotein thiols in ten Arabidopsis ecotypes—correlation with copper tolerance. Plant Physiol 109:945–954
  • Navabpour S, Morris K, Allen R, Harrison E, A-H-Mackerness S, Buchanan-Wollaston V (2003) Expression of senescenceenhanced genes in response to oxidative stress. J Exp Bot 54:2285–2292
  • Ni CY, Chen YX, Lin Q, Tian GM (2005) Subcellular localization of copper in tolerant and non-tolerant plant. J Environ Sci China 17:452–456
  • Nishiuchi S, Liu SK, Takano T (2007) Isolation and characterization of a metallothionein-1 protein in Chloris virgata Swartz that enhances stress tolerances to oxidative, salinity and carbonate stress in Saccharomyces cerevisiae. Biotechnol Lett 29:1301–1305
  • Obertello M, Wall L, Laplaze L, Nicole M, Auguy F, Gherbi H, Bogusz D, Franche C (2007) Functional analysis of the metallothionein gene cgMT1 isolated from the actinorhizal tree Casuarina glauca. Mol Plant Microbe In 20:1231–1240
  • Qian M, Li XD, Shen ZG (2005) Adaptive copper tolerance in Elsholtzia haichowensis involves production of Cu-induced thiol peptides. Plant Growth Regul 47:65–73
  • Rauser WE (1999) Structure and function of metal chelators produced by plants—the case for organic acids, amino acids, phytin, and metallothioneins. Cell Biochem Biophys 31:19–48
  • Robinson NJ, Tommey AM, Kuske C, Jackson PJ (1993) Plant metallothioneins. Biochem J 295:1–10
  • Roosens NH, Bernard C, Leplae R, Verbruggen N (2004) Evidence for copper homeostasis function of metallothionein (MT3) in the hyperaccumulator Thlaspi caerulescens. FEBS Lett 577:9–16
  • Shi JY, Wu B, Yuan XF, Cao YY, Chen XC, Chen YX, Hu TD (2008) An X-ray absorption spectroscopy investigation of speciation and biotransformation of copper in Elsholtzia splendens. Plant Soil 302:163–174
  • Snowden KC, Richards KD, Gardner RC (1995) Alumium-induced genes-induction by toxic metals, low-calcium, and wounding and pattern of expression in root-tips. Plant Physiol 107:341–348
  • Song J, Zhao FJ, Luo YM, McGrath SP, Zhang H (2004) Copper uptake by Elsholtzia splendens and Silene vulgaris and assessment of copper phytoavailability in contaminated soils. Environ Pollut 128:307–315
  • Tang SR, Wilke BM, Huang CY (1999) The uptake of copper by plants dominantly growing on copper mining spoils along the Yangtze River, the People’s Republic of China. Plant Soil 209:225–232
  • van Hoof NALM, Hassinen VH, Hakvoort HWJ, Ballintijn KF, Schat H, Verkleij JAC, Ernst WHO, Karenlampi SO, Tervahauta AI (2001) Enhanced copper tolerance in Silene vulgaris (Moench) Garcke populations from copper mines is associated with increased transcript levels of a 2b-type metallothionein gene. Plant Physiol 126:1519–1526
  • Wong HL, Sakamoto T, Kawasaki T, Umemura K, Shimamoto K (2004) Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice. Plant Physiol 135:1447–1456
  • Xue TT, Li XZ, Zhu W, Wu C, Yang GD, Zheng CC (2009) Cotton metallothionein GhMT3a, a reactive oxygen species scavenger, increased tolerance against abiotic stress in transgenic tobacco and yeast. J Exp Bot 60:339–349
  • Yuan J, Chen D, Ren YJ, Zhang XL, Zhao J (2008) Characteristic and expression analysis of a metallothionein gene, OsMT2b, downregulated by cytokinin suggests functions in root development and seed embryo germination of rice. Plant Physiol 146:1637–1650
  • Zhang HX, Xia Y, Wang GP, Shen ZG (2008) Excess copper induces accumulation of hydrogen peroxide and increases lipid peroxidation and total activity of copper–zinc superoxide dismutase in roots of Elsholtzia haichowensis. Planta 227:465–475
  • Zhang HX, Zhang FQ, Xia Y, Wang GP, Shen ZG (2010) Excess copper induces production of hydrogen peroxide in the leaf of Elsholtzia haichowensis through apoplastic and symplastic CuZn-superoxide dismutase. J Hazard Mater 178:834–843
  • Zhou JM, Goldsbrough PB (1994) Functional homologs of fungal metallothionein genes from Arabidopsis. Plant Cell 6:875–884
  • Zhou JM, Goldsbrough PB (1995) Structure, organization and expression of the metallothionein gene family in Arabidopsis. Mol Gen Genet 248:318–328
  • Zhu W, Zhao DX, Miao Q, Xue TT, Li XZ, Zheng CC (2009) Arabidopsis thaliana metallothionein, AtMT2a, mediates ROS balance during oxidative stress. J Plant Biol 52:585–592
Uwagi
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-0e849210-d4f2-41fb-aac7-635cf52eccd5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.