PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 5 |

Tytuł artykułu

Multivariate logistic regression model for soil erosion susceptibility assessment under static and dynamic causative factors

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Soil erosion is a devastating land degradation process that needs to be spatially analyzed for identification of critical zones for sustainable management. Geospatial prediction through susceptibility analysis assesses the occurrence of soil erosion under a set of causative factors (CFs). Previous studies have considered majorly static CFs for susceptibility analysis, but neglect dynamic CFs. Thus, this study presents an evaluation of erosion susceptibility under the influence of both non-redundant static and dynamic CFs using multivariate logistic regression (MLR), remote sensing and geographic information system. The CFs considered include drainage density, lineament density, length-slope and soil erodibility as static CFs, and land surface temperature, soil moisture index, vegetation index and rainfall erosivity representing the dynamic CFs. These were parameterized to establish geospatial relationships with the occurrence of erosion. The results showed that length-slope had the highest positive impact on the occurrence of erosion, followed by lineament density. During the MLR classification process, predicted accuracies for the eroded and non-eroded locations were 89.1% and 83.6% respectively, with an overall prediction accuracy of 86.6%. The model’s performance was satisfactory, with 81.9% accuracy when validated using the area-under-curve method. The output map of this study will assist decision makers in sustainable watershed management to alleviate soil erosion.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

5

Opis fizyczny

p.3419-3429,fig.,ref.

Twórcy

  • Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
  • Department of Water Resources and Environmental Engineering, University of Ilorin, PMB 1515, Ilorin, Kwara State, Nigeria
  • Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
  • Centre for Urban Resource Sustainability, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
autor
  • Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
autor
  • Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
autor
  • Department of Earth Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan
autor
  • Faculty of Industrial Management, Universiti Malaysia Pahang, 26300 Gambang, Pahang, Malaysia
autor
  • Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia

Bibliografia

  • 1. MARIA K., PANTELIS S., FILIPPOS V. Soil erosion prediction using the revised universal soil loss equation in a GIS framework, Chania, Northwestern Crete, Greece. Environmental Geology, 57 (3), 483, 2009.
  • 2. RAHMAN M.R., SHI Z., CHONGFA C. Soil erosion hazard evaluation - an integrated use of remote sensing, GIS and statistical approaches with biophysical parameters towards management strategies. Ecological Modelling, 220 (13), 1724, 2009.
  • 3. SUN W., SHAO Q., LIU J., ZHAI J. Assessing the effects of land use and topography on soil erosion on the Loess Plateau in China. Catena, 121, 151, 2014.
  • 4. OCHOA P., FRIES A., MEJÍA D., BURNEO J., RUÍZ-SINOGA J., CERDÀ A. Effects of climate, land cover and topography on soil erosion risk in a semiarid basin of the Andes. Catena, 140, 31, 2016.
  • 5. ANGIMA S., STOTT D., O’NEILL M., ONG C., WEESIES G. Soil erosion prediction using RUSLE for central Kenyan highland conditions. Agriculture, Ecosystems & Environment, 97 (1), 295, 2003.
  • 6. BRUNNER A., PARK S., RUECKER G., DIKAU R., VLEK P. Catenary soil development influencing erosion susceptibility along a hillslope in Uganda. Catena, 58 (1), 01, 2004.
  • 7. VAHABI J., NIKKAMI D. Assessing dominant factors affecting soil erosion using a portable rainfall simulator. International Journal of Sediment Research, 23 (4), 376, 2008.
  • 8. AKGÜN A., TÜRK N. Mapping erosion susceptibility by a multivariate statistical method: a case study from the Ayvalık region, NW Turkey. Computers & Geosciences, 37 (9), 1515, 2011.
  • 9. LUCÀ F., CONFORTI M., ROBUSTELLI G. Comparison of GIS-based gullying susceptibility mapping using bivariate and multivariate statistics: Northern Calabria, South Italy. Geomorphology, 134 (3) 297, 2011.
  • 10. AYALEW L., YAMAGISHI H. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65 (1), 15, 2005.
  • 11. TEHRANY M.S., PRADHAN B., MANSOR S., AHMAD N. Flood susceptibility assessment using GIS-based support vector machine model with different kernel types. Catena, 125, 91, 2015.
  • 12. LEE M.J., KANG J.E., JEON, S. Application of frequency ratio model and validation for predictive flooded area susceptibility mapping using GIS. In Geoscience and Remote Sensing Symposium (IGARSS), 895, 2012.
  • 13. ABDULKADIR T.S., MUHAMMAD M.R., KHAMARUZAMAN W.Y., AHMAD H.M. Geostatistical based susceptibility mapping of soil erosion and optimization of its causative factors: A conceptual framework. Journal of Engineering Science and Technology, 12 (11), 2880, 2017.
  • 14. MAGLIULO P. Assessing the susceptibility to waterinduced soil erosion using a geomorphological, bivariate statistics-based approach. Environmental Earth Sciences, 67 (6), 1801, 2012.
  • 15. CONFORTI M., AUCELLI P.P., ROBUSTELLI G., SCARCIGLIA F. Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy). Natural hazards, 56 (3), 881, 2011.
  • 16. WENG T.K., MOKHTAR M.B. Emerging issues towards sustainable river basin management in Cameron Highlands, Malaysia. Environment and Natural Resources Journal, 9 (2), 58, 2011.
  • 17. TAMENE L., LE Q.B. Estimating soil erosion in sub-Saharan Africa based on landscape similarity mapping and using the revised universal soil loss equation (RUSLE). Nutrient Cycling in Agroecosystems, 102 (1), 17, 2015.
  • 18. JAMIL N.R., RUSLAN M.S., TORIMAN M.E., IDRIS M., RAZAD A.A. Impact of landuse on seasonal water quality at highland lake: A case study of Ringlet Lake, Cameron Highlands, Pahang. From Sources to Solution: Springer, 409, 2014.
  • 19. KHALIK W.M.A.W.M., ABDULLAH M.P., AMERUDIN N.A., PADLI N. Physicochemical analysis on water quality status of Bertam River in Cameron Highlands, Malaysia. Journal of Materials and Environmental Science, 4 (4), 488, 2013.
  • 20. JENSEN L., LARIYAH M.S., MOHAMED N.M.D., PIERRE Y.J. Challenge in running hydropower as source of clean energy: Ringlet reservoir, Cameron Highlands case study. Proceedings National Graduate Conference, Universiti Tenaga Nasional, November 8-10, Malaysia, 2012.
  • 21. JANSEN L., LARIYAH M.S., MOHAMED N.M.D., PIERRE Y.J. Hydropower reservoir for flood control: A case study on Ringlet reservoir, Cameron Highlands, Malaysia. Journal of Flood Engineering, 4 (1), 87, 2013.
  • 22. TEHRANY M.S., PRADHAN B., JEBUR M.N. Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. Journal of Hydrology, 504, 69, 2013.
  • 23. PRADHAN B. A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers & Geosciences, 51, 350, 2013.
  • 24. YALCIN A., REIS S., AYDINOGLU A., YOMRALIOGLU T. A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena, 85 (3) 274, 2011.
  • 25. KAVZOGLU T., SAHIN E.K., COLKESEN I. Selecting optimal conditioning factors in shallow translational landslide susceptibility mapping using genetic algorithm. Engineering Geology, 192, 101, 2015.
  • 26. RAHMATI O., HAGHIZADEH A., POURGHASEMI H.R., NOORMOHAMADI F. Gully erosion susceptibility mapping: The role of GIS-based bivariate statistical models and their comparison. Natural Hazards, DOI 10.1007/s11069-016-2239-7, 2016.
  • 27. PRADEEP G.S., KRISHNAN M.N., VIJITH H. Identification of critical soil erosion prone areas and annual average soil loss in an upland agricultural watershed of Western Ghats, using analytical hierarchy process (AHP) and RUSLE techniques. Arabian Journal of Geosciences, 8 (6), 3697, 2015.
  • 28. GAYEN A., SAHA S. Application of weights-of-evidence (WoE) and evidential belief function (EBF) models for the delineation of soil erosion vulnerable zones: a study on Pathro river basin, Jharkhand, India. Modeling Earth Systems and Environment, 1, 2017.
  • 29. FERNÁNDEZ S., MARQUÍNEZ J., MENÉNDEZ-DUARTE R. A sapping erosion susceptibility model for the southern Cantabrian Range, North Spain. Geomorphology, 95 (3), 145, 2008.
  • 30. CONOSCENTI C., AGNESI V., ANGILERI S., CAPPADONIA C., ROTIGLIANO E., MARKER M. A GIS-based approach for gully erosion susceptibility modeling: A test in Sicily, Italy. Environmental Earth Sciences, 70, 1179, 2013.
  • 31. ANGILERI S.E., CONOSCENTI C., HOCHSCHILD V., MÄRKER M., ROTIGLIANO E., AGNESI V. Water erosion susceptibility mapping by applying Stochastic Gradient Treeboost to the Imera Meridionale River Basin (Sicily, Italy). Geomorphology, 262, 61, 2016.
  • 32. SHIT P.K., PAIRA R., BHUNIA G., MAITI R. Modeling of potential gully erosion hazard using geo-spatial technology at Garbheta block, West Bengal in India. Modeling Earth Systems and Environment, 1 (2), 01, 2015.
  • 33. ALAA M.A.A., ALI K.A.A. Susceptibility mapping of gully erosion using GIS-based statistical bivariate models: a case study from Ali Al-Gharbi District, Maysan Governorate, southern Iraq. Environmental Earth Sciences, 77, 249, 2018.
  • 34. WANG B., ZHENG F., RÖMKENS M.J., DARBOUX F. Soil erodibility for water erosion: A perspective and Chinese experiences. Geomorphology, 187, 1, 2013.
  • 35. KARTIC K.M., ANNADURAI R., RAVICHANDRAN P.T. Assessment of soil erosion susceptibility in Kothagiri Taluk using revised universal soil loss equation (RUSLE) and geo-spatial technology. International Journal of Science Research Publications, 4 (10), 13, 2014.
  • 36. TEHRANY M.S., SHABANI F., DYMPHNA N.J., KUMAR L. Soil erosion susceptibility mapping for current and 2100 climate conditions using evidential belief function and frequency ratio. Geomatics, Natural Hazards and Risk, 1, 2017.
  • 37. SINGHAL P.K., SHRIVASTAVA P. Challenges in sustainable development: Anmol., 2004.
  • 38. LAL R. Soil degradation by erosion. Land Degradation & Development, 12 (6), 519, 2001.
  • 39. ABDULKADIR T.S., MUSTAFA M.R., KHAMARUZAMAN Y.W., HASHIM A.M. Evaluation of rainfall-runoff erosivity factor for Cameron Highlands, Pahang, Malaysia. Journal of Ecological Engineering, 17 (3), 01, 2016.
  • 40. GAO J., WU S. Simulated effects of land cover conversion on the surface energy budget in the Southwest of China. Energies, 7 (3), 1251, 2014.
  • 41. SOHEILA Y.J. The effect of land use on land surface temperature in the Netherlands. M.Sc Thesis Submitted to Lund University Sweden, 2013.
  • 42. MAZEN E.A. Assessing MODIS land surface temperature (LST) over Jeddah. Polish Journal of Environmental Studies, 26 (4), 1461, 2017.
  • 43. BOORI M.S., VOZENILEK V., BALZTER H., CHOUDHARY K. Land surface temperature with land cover classes in ASTER and Landsat data. Journal of Geophysics and Remote Sensing, 4 (1), 1, 2015.
  • 44. BOORI M.S., VOŽENÍLEK V., BURIAN J. Land cover disturbance due to tourism in Czech Republic. Proceedings of the Fifth International Conference on Innovations in Bio-Inspired Computing and Applications IBICA, Springer, 2014.
  • 45. XUE X., LUO Y., ZHOU X., SHERRY R., JIA X. Climate warming increases soil erosion, carbon and nitrogen loss with biofuel feedstock harvest in tallgrass prairie. Gcb Bioenergy, 3 (3), 198, 2011.
  • 46. KARNIELI A., BEN-ASHER J. A daily runoff simulation in semi-arid watersheds based on soil water deficit calculations. Journal of hydrology, 149 (1-4), 9, 1993.
  • 47. PARVEEN R., KUMAR U. Integrated approach of universal soil loss equation (USLE) and geographical information system (GIS) for soil loss risk assessment in Upper South Koel Basin, Jharkhand. Journal of Geographic Information System, 4 (6), 588, 2012.
  • 48. WAWER R., NOWOCIEN E., PODOLSKI B. Eal and calculated Kusle erodibility factor for selected Polish soils. Polish Journal of Environmental Studies, 14 (5), 655, 2005.
  • 49. WISCHMEIER W.H., SMITH D.D. Rainfall energy and its relationship to soil loss. Eos, Transactions American Geophysical Union, 39 (2), 285, 1958.
  • 50. TAN K., LIAO Z., DU P., WU L. Land surface temperature retrieval from Landsat 8 data and validation with geosensor network, Frontiers of Earth Science, 11, 20, 2017.
  • 51. ABDULKADIR T.S., MUHAMMAD M.R., KHAMARUZAMAN W.Y., AHMAD H.M. Assessing the influence of terrain characteristics on spatial distribution of satellite derived land surface parameters in mountainous areas. 37th IAHR World Congress, 13-18th August, Kuala Lumpur Malaysia, 37 2897, 2017.
  • 52. TEERAWONG L., TORSAK G., TANUTDECH R. Application of remote sensing for temperature monitoring: The technique for land surface temperature analysis. Journal of Ecological Engineering, 18 (3), 53, 2017.
  • 53. SANDHOLT I., RASMUSSEN K., ANDERSEN J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of environment, 79 (2), 213, 2002.
  • 54. SRUTHI S., ASLAM M.M. Agricultural drought analysis using the NDVI and land surface temperature data; a case study of Raichur district. Aquatic Procedia, 4, 1258, 2015.
  • 55. POTIĆ I., BUGARSKI M., MATIĆ-Varenica J. Soil moisture determination using remote sensing data for the property protection and increase of agriculture production. Responsible Land Governance: Towards an Evidence Based Approach. The World Bank, Washington DC, U.S. 2017.
  • 56. CONOSCENTI C., ANGILERI S., CAPPADONIA C., ROTIGLIANO E., AGNESI V., MÄRKER M. Gully erosion susceptibility assessment by means of GIS-based logistic regression: a case of Sicily (Italy). Geomorphology, 204, 399, 2014.
  • 57. HOSMER D., LEMESHOW S. Applied logistic regression. 2nd ed. New York: John Wiley and Sons, 2000.
  • 58. OZDEMIR A., ALTURAL T. A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. Journal of Asian Earth Sciences, 64, 180, 2013.
  • 59. DENG Y., WANG S., BAI X., TIAN Y., WU L., XIAO J., CHEN F., QIAN Q. Relationship among land surface temperature and LUCC, NDVI in typical karst area. Scientific Reports, 8 (1), 641, 2018.
  • 60. PARIDA B.R., COLLADO W.B., BORAH R., HAZARIKA M.K., SAMARAKOON L. Detecting drought prone areas of rice agriculture using a MODIS-derived soil moisture index. GIScience & Remote Sensing, 45 (1), 109, 2008.
  • 61. MENARD S. Logistic Regression: From introductory to advanced concepts and applications. Thousand Oaks, CA, Sage, 2010.
  • 62. ABDULLAH J. Highlands Developments in Malaysia. Globalization and marginalization in mountain regions. Springer, 147, 2016.
  • 63. KACHOURI S., ACHOUR H., ABIDA H., BOUAZIZ S. Soil erosion hazard mapping using Analytic Hierarchy Process and logistic regression: a case study of Haffouz watershed, central Tunisia. Arabian Journal of Geosciences, 8 (6), 4257, 2015.
  • 64. BARROW C., NGAI WENG C., MASRON T. Issues and challenges of sustainable agriculture in the Cameron Highlands. Malaysian Journal of Environmental Management, 10 (2), 89, 2009.
  • 65. GUZZETTI F., CARRARA A., CARDINALI M., REICHENBACH P. Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31 (1), 181, 1999.
  • 66. NANDI A., SHAKOOR A. A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Engineering Geology, 110 (1), 11, 2010.
  • 67. ALTHUWAYNEE O.F., PRADHAN B., LEE S. Application of an evidential belief function model in landslide susceptibility mapping. Computers & Geosciences, 44, 120. 2012.
  • 68. MAHALINGAM R., OLSEN M.J., O’BANION M.S. Evaluation of landslide susceptibility mapping techniques using lidar-derived conditioning factors (Oregon case study). Geomatics, Natural Hazards and Risk, 7 (6), 1884, 2016.
  • 69. BUI D.T., PRADHAN B., LOFMAN O., REVHAUG I., DICK O.B. Landslide susceptibility mapping at Hoa Binh province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS. Computers & Geosciences, 45, 199, 2012.
  • 70. JEBUR M.N., PRADHAN B., TEHRANY M.S. Optimization of landslide conditioning factors using very high-resolution airborne laser scanning (LiDAR) data at catchment scale. Remote Sensing of Environment, 152, 150, 2014.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-0e42d625-16c4-4570-9178-97f30260cfad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.